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Preface 
 

Dear reader, 

 

Neuroadaptive Technology concerns the use of measures from the brain and central nervous 

system to adapt a technological device to its user. In 2016, we decided that it was time to 

organise a series of biannual conferences on this topic, as many different fields of research 

included the use of neurophysiological and psychophysiological signals to improve human-

technology interaction, but there was no regular event that served the research community 

by exclusively devoting itself to this topic.  

 

With this programme, we are happy to welcome you to the first results of this endeavour: 

the first biannual Neuroadaptive Technology Conference, NAT’17. 

 

NAT’17 is intended to serve as a hub and a conduit, exploring the emergence of this nascent 

technology and connecting all relevant fields of research, both technical and societal; for 

instance, we specifically emphasize issues related to privacy and ethics associated with 

neuroadaptive technology in the current programme. With NAT’17 being the first of the 

series, we will also announce the creation of a scientific society devoted to research on 

Neuroadaptive Technology. This society will facilitate communications within our research 

community and strengthen connections between researchers who are interested in 

neuroadaptive technology as well as to other scientific organisations and related 

conferences. 

 

At NAT’17 we are bringing together around 100 researchers from 6 continents and from the 

scientific areas of: Brain-Computer Interfaces, Physiological Computing, Neuroergonomics, 

Human-Computer Interaction, Applied Neuroscience, Robotics, Affective Computing, 

Neurofeedback, Autonomous Technology, Gaming, Wearable Sensors, Machine Learning 

and Neuroethics.   

 

This programme includes abstracts describing research contributions from all these fields. 

Keynote addresses are listed first, given by five excellent researchers representing fields 

strongly related to neuroadaptive technology. Oral presentations from the 12 sessions, in 

order of presentation, are listed next. Finally, in alphabetical order, this programme contains 

the abstracts of the poster presentations. An alphabetical list of all authors is included at the 

end of this programme. Authors who presented at NAT’17 are highlighted in boldface. We 

also have a Young Visionaries session devoted to those emerging scientists who are 

interested in the field of Neuroadaptive Technology whilst working on their first scientific 

graduation.  

 

If you are a participant of NAT’17, we hope that you enjoy the conference and will support 

this development by becoming an active member of the society. If you did not participate, 

we hope that you appreciate our approach and that the programme of this inaugural meeting 

will excite your interest in research related to neuroadaptive technology. Either way, we 

hope to see you at NAT’19, which will be organized in 2019 by the Society for 

Neuroadaptive Technology. Next year, in 2018, the second Neuroergonomics conference 

will take place at Drexel University in the United States of America. If you are interested in 

NAT’17, we can highly recommend this conference as well. 
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In between the conferences, throughout the year, you will find interesting information about 

research, the society, and NAT conferences at the website: neuroadaptive.org. Members of 

the society will also have the chance to watch videos of all talks given at NAT’17 there. 

 

 

With best regards, 

 

 

Thorsten O. Zander   Stephen Fairclough 

TU Berlin, Germany   LJMU, UK 
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Robert Jacob 
Implicit User Interfaces 

 

Room: Main Room 

Time: 09:30 – 10:30 

Day: 1 

 

ABSTRACT 

Implicit user interfaces obtain information from their users passively, typically in addition to 

mouse, keyboard, or other explicit inputs. They fit into the emerging trends of physiological 

computing and affective computing. Our work focuses on using brain input for this purpose, 

measured through functional near-infrared spectroscopy (fNIRS), as a way of increasing the 

narrow communication bandwidth between human and computer. Most previous brain-

computer interfaces have been designed for people with severe motor disabilities and use 

explicit signals as the primary input; but these are too slow and inaccurate for wider use. Instead, 

we use brain measurement to obtain more information about the user and their context directly 

and without asking additional effort from them. We have obtained good results in a number of 

systems we created, as measured by objective task performance metrics. I will discuss our work 

on brain-computer interfaces and the more general area of implicit interaction. 

 

BIOGRAPHY 

Robert Jacob is a Professor of Computer Science at Tufts University, where his research 

interests are new interaction modes and techniques and user interface software; his current work 

focuses on implicit brain-computer interfaces. He has been a visiting professor at the University 

College London Interaction Centre, Universite Paris-Sud, and the MIT Media Laboratory.  

Before coming to Tufts, he was in the Human-Computer Interaction Lab at the Naval Research 

Laboratory.  He received his Ph.D. from Johns Hopkins University, and he is a member of the 

editorial board for the journal Human-Computer Interaction and a founding member for ACM 

Transactions on Computer-Human Interaction.  He has served as Vice-President of ACM 

SIGCHI, Papers Co-Chair of the CHI and UIST conferences, and General Co-Chair of UIST 

and TEI.  He was elected as a member of the ACM CHI Academy in 2007 and as an ACM 

Fellow in 2016. 
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Makoto Miyakoshi 

Computational Neuroscience of Human EEG 

 

Room: Main Room 

Time: 13:30 – 14:30 

Day: 1 

 

Title: I see a solution. 

 

 

ABSTRACT 

 
In this keynote lecture, I will talk about three topics: future, present, and the past of EEG 

research. In the first part, I will talk about the future of EEG research including Brain-Computer 

Interface using EEG/electrocorticogram (ECoG). I show my preliminary observation that 

dimension reduction using principal component analysis to keep 95% of original data variance 

produced 9/256 dimensions for EEG and 78/137 for ECoG. Based on this observation, I 

introduce Makoto's pessimism -- a suspicion that the true number of degrees of freedom of EEG 

data may be severely limited. The possible reason for this limitation is the anatomy and 

cytoarchitecture of EEG generation. Makoto's pessimism also seems to explain the reason why 

independent component analysis (ICA) on scalp-recorded EEG data always generates only 10-

20 good effective brain sources regardless the number of scalp channels (from 32 to 256 

channels, preliminary observation). If Makoto's pessimism is true, the possibility of future BCI 

using scalp-recorded EEG would have a fundamental limitation because the complexity of 

mental dynamics cannot be represented in such low dimensional data, though using ECoG 

should be much more promising. 

 In the second part, I will talk about the present of EEG research. I will first briefly 

introduce a demonstration of cutting-edge studies using the state-of-the-art signal processing 

and statistical methods including ICA and subsequent information flow analysis using 

Multivariate Autoregressive (MVAR) modeling. Next, I will discuss the vacancy of the ground 

truth in EEG research. For example, functional MRI has been considered as producing ‘an X-

ray of the experimental effect of interest’ (according to the SPM website). This has been 

possible because for MR imaging, a phantom for calibration serves as a ground truth. However, 

in the history of EEG research, there has never been such an explicit ground truth available. 

Because of the lack of ground truth, there is circularity between assumptions of analyses and 

interpretation of the results. There is also an issue of relativism across the models due to lack 

of the ground truth, which produces incommensurability in comparing multiple studies with 

different models (e.g. linear vs. non-linear). I will discuss that we tend to compensate the lack 

of the ground truth by using ‘fancy’ signal processing and eye-indulging visualizations. I will 

discuss the distinction between science and engineering, and argue it is important to consider 

whether a given method for EEG analysis allows us to get closer to the ground truth of EEG. I 

name the current EEG research scene as adolesc-i-ence because it is immature but with full of 

possibility. 

 In the third part, I will talk about the past of EEG research. I will refer to a brief history 

that EEG has been used as psychologists’ tool to serve a box model. I will introduce the concept 

of viewing the role of a scientific experiment to be a one-bit information generator, i.e., a device 

to give a yes or no answer to a Popperian hypothesis. This is a scientifically valid point of view, 

but I criticize it as a Popperian Defense that justifies not taking advantage of advanced 
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engineering methods available today, one that is keeping the majority of EEG researchers 

within an evolutionary cul-de-sac. I will introduce ICA as a promising approach for analyzing 

EEG, will explain its nature, and will discuss how it relates to the ground truth of EEG -- its 

specific strengths as well as weaknesses. In a concluding remark, I will claim that for EEG 

research to progress from its current status as adolesc-i-ence, it is necessary to think how EEG 

could become more like an X-ray of the (electrical) brain, and how to overcome the Popperian 

Defense by demonstrating an advantage for science (rather than for engineering). I will also 

claim that anatomical studies on morphology of neurons and axons as well as their connections 

and projections should be re-visited since they are a part of ground truth of EEG. 
 

BIOGRAPHY 

Makoto Miyakoshi is an associate project scientist of Swartz Center for Computational 

Neuroscience (SCCN), Institute for Neural Computation, University of California San Diego. 

He received Bachelor’s degree in Philosophy in Waseda University in 2003, Master’s degree 

and PhD in Psychology in Nagoya University in 2005 and 2011. He received fellowship from 

Japan Society for the Promotion of Science (JSPS) during 2005-2008 and 2011-2013 with 

which he visited SCCN director Scott Makeig, and later he became Scott’s post-doc in 2011. 

In parallel with analyzing clinical EEG data in collaboration with clinical researchers of 

schizophrenia, epilepsy, and post-stroke motor rehabilitation using TMS, he has been working 

on optimizing workflows and algorithm of EEG preprocess pipeline using independent 

component analysis (ICA). He also makes contribution to user community of EEGLAB, which 

is the most widely used free, open-source EEG analysis library developed by SCCN, by 

developing extensions, answering questions to the mailing list, and publishing information in 

SCCN websites. 
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Surjo Soekadar 

Applied Neurotechnology 

Room: Main Room 

Time: 09:00 – 10:00 

Day: 2 

 

Title: Towards clinical applications of neuroadaptive    

brain-computer interfaces  

 

ABSTRACT 

Today, five out of ten diseases worldwide resulting in long-term disability are related to the 

central nervous system. Due to the immense complexity and inter-individual variability of the 

human brain there are still no effective treatment options for many serious neurological and 

psychiatric disorders such as stroke, major depression, schizophrenia or dementia. Recent 

advancements in sensor technology and computational capacities resulted in the development 

of brain-computer interfaces (BCIs) that translate electric, magnetic or metabolic brain activity 

into control signals of external devices, robots or machines. Moreover, novel transcranial 

magnetic and electric brain stimulation (TMS/TES) systems were developed allowing for direct 

modulation of brain activity. However, current BCIs are limited by the low information 

extraction rate constraining fluent direct brain-computer interaction. Furthermore, as 

simultaneous assessment of brain oscillations during TES was regarded unfeasible due to 

stimulation artefacts, current TES systems can only deliver “open-loop” stimulation unrelated 

to the underlying dynamic brain states resulting in highly variable TES effects.  

The key-note lecture will describe how combing both techniques into a neuroadaptive BCI 

might overcome these limitations and lead to new and more effective treatments strategies for 

neurological and psychiatric disorders. Besides addressing the feasibility of assessing brain 

oscillations during TES, the lecture will also provide an overview of how BCIs can be taken 

out of the lab, e.g. to restore activities of daily living after quadriplegia and improve motor 

function after stroke. The next steps towards the development and application of neuradaptive 

BCIs will be depicted, and possible neuroethical dimensions discussed. 

BIOGRAPHY 

Dr. Surjo R. Soekadar, MD, is head of the Applied Neurotechnology Laboratory at the 

University Hospital of Tübingen. From 2009-2012, he was fellow at the Human Cortical 

Physiology and Stroke Neurorehabilititation Section (HCPS) at the NIH, USA. His research 

interests include cortical plasticity in the context of brain-machine interface (BMI) applications, 

non-invasive brain stimulation and neural mechanisms of learning and memory. He developed 

the first paradigms that combine BMI with transcranial electric stimulation (TES), and 

demonstrated full restoration of independent daily living activities, such as eating and drinking, 

across quadriplegic patients who used a hybrid brain/neural hand-exoskeleton outside the 

laboratory. He is member of board of several NGO’s dealing with improving health care in 

developing countries and served as resource specialist at the Salzburg Global Seminar. Surjo  
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Soekadar was co-chair of the 2013 and 2015 International Workshops on Clinical Brain-

Machine Interface Systems. He received various prizes such as the NIH-DFG Research Career 

Transition Award (2009), the NIH Fellows' Award for Research Excellence (2011), the 

international BCI Research Award 2012 (together with Niels Birbaumer) and the Biomag 2014 

Young Investigator Award. 
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Tim Mullen 

Ubiquitous Neurotechnology in the Cloud 

Room: Main Room 

Time: 13:00 – 14:00 

Day: 2 

 

Title: Into The Wild: When Neurotechnology Escapes the Lab    

and Other Adventures in Translation 

ABSTRACT 

In this talk, I will discuss and demonstrate efforts at Qusp to reduce the barrier for translation 

of neurotechnology beyond the laboratory and into ubiquitous, real-world applications. 

Throughout the talk, I will address several opportunities for translational neurotechnology and 

“real-world” brain-computer interfacing. These include emerging sensors and systems for 

pervasive measurement and interpretation of brain and body signals during everyday activities; 

signal processing and machine learning for adaptive brain/behavioral state identification and 

closed-loop feedback in complex, noisy environments; infrastructure and methods for large-

scale multi-study analysis (“Big EEG”) facilitating generalizable knowledge discovery and 

modeling across heterogeneous data; emerging industry standards for multi-modal data storage, 

organization, and interoperability; and a cloud-based, scalable middleware platform enabling 

diverse industry applications which build on validated scientific research and methods, 

facilitating the widespread integration of brain and body sensing into everyday life.  

BIOGRAPHY 

Dr. Tim Mullen (Qusp Neurotechnologies founder & CEO/CSO; Qusp Labs Director) holds 

degrees in computer science and computational and cognitive neuroscience with dual B.A.s 

from UC Berkeley and M.S. and Ph.D degrees from the UC San Diego Dept. of Cognitive 

Science and Institute for Neural Computation. At Xerox PARC he developed patented 

applications of wearable brain-computer interface (BCI) technology. He has advanced widely 

used software for neuronal data analysis and prediction (EEGLAB, BCILAB, SIFT, MPT), and 

led high-profile mobile brain imaging projects such as the “Glass Brain”. Prior academic awards 

included the UCSD Chancellor’s Dissertation Medal, IEEE best paper awards, Glushko, San 

Diego, and Swartz Fellowships, and UC Berkeley highest honors. His scientific publications 

focus on the use of machine learning and adaptive system identification techniques to infer 

cognitive and emotional states and to detect neuronal pathologies. He is a frequent speaker at 

international conferences and workshops, and his work has been highlighted in numerous print 

and TV media including BBC World, Discovery Science, and Wired, and before the US 

Congress. He is also a musician and artist whose work in audiovisual new media, exploring 

real-time interactions between the brain and body and external environments, has been 

presented nationally and internationally. He is a Creative Director for San Diego classical arts 

organization Mainly Mozart. There he serves as founding director of the annual Mozart & the 

Mind festival, a series of concerts, presentations, and interactive media and neurotechnology 

exhibitions exploring the impact of music on our brains, health, and lives. His hobbies include 

SCUBA diving, motorcycling, writing music, trans-global travel, and hanging out with his wife 

and cat in San Diego. 
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Neuroethics 

 

Room: Main Room 
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Title: Sense of agency and responsibility in neuroadapted action 

ABSTRACT 

The distinction between something I do and something that happens to me is generally clear, 

but not always an easy one to make. Increasingly we are embedded in environments full of 

artificial ‘helpers’ that actively contribute to the translation of human (sub)conscious intentions 

into action. Neuroadaptive technology has the potential to create fascinating cases of mediated 

action where the question ‘who did that?’ will make sense individually and societally. I will 

examine some of such cases and discuss their potential ethical, legal or societal consequences. 

BIOGRAPHY 

Pim Haselager obtained master degrees in philosophy and psychology, and received his PhD in 

1995 at the Free University of Amsterdam, the Netherlands. Currently he is associate professor 

and principal investigator (Theoretical Cognitive Science) at the Donders Institute for Brain, 

Cognition and Behaviour, at the Radboud University Nijmegen. 

His research focuses on the implications of Cognitive neuroscience and Artificial Intelligence 

for human self-understanding. He investigates the ethical and societal implications of research 

in, and the ensuing technologies of, CNS and AI, such as Robotics, Brain-Computer Interfacing, 

and Deep Brain Stimulation. He is particularly interested in the integration of empirical work 

(i.e. experimentation, computational modeling, and robotics) with philosophical issues 

regarding knowledge, identity, agency, responsibility and intelligent behavior. 

He has published in journals such as American Journal of Bioethics, Neuroethics, Journal of 

Cognitive Neuroscience and Journal of Social Robotics. He is vice-president of the European 

Association for Neuroscience and Law. 
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COGNITIVE PROBING FOR AUTOMATED NEUROADAPTATION 

 
Laurens Ruben Krol , Thorsten Oliver Zander   

Team PhyPA, Biological Psychology and Neuroergonomics, Technische Universität Berlin, 

Germany 

E-mail address: {lrkrol, tzander}@gmail.com  

ABSTRACT: The concept of cognitive probing is presented as a method for a computer 

system to autonomously gather information about a user’s preferences. This is demonstrated 

using a form of cursor control. 

 

INTRODUCTION 

 

Neuroadaptive technology uses measures of its user’s neurophysiological activity in order 

to enable and inform its own adaptation to that user [1]. As such, a goal-directed closed 

feedback loop can be created where the user state induces system adaptations, and system 

adaptations influence the user state [2]. Such a system must then also have a goal or “agenda” 

to guide its adaptations [3]. For example, adaptive automation systems increase automation 

levels when a user’s workload is high and vice versa [4-5]. Their goal is to balance workload 

such that an optimal level of engagement is maintained. The logic to reach this goal, 

however, is generally pre-programmed: the adaptive responses to different levels of 

workload are fixed. Furthermore, the closed-loop adaptation limits the possibilities of 

adaptation to the information that is present within that loop—in this case, the one-

dimensional measure of workload can only have a one-dimensional response of automation 

levels. Cognitive probing represents a way to a) automatically learn which adaptations are 

effective in which contexts with only limited prior logic, and b) go beyond closed-loop 

adaptation to automated adaptation: the automatically gathered information can be used by 

the system to act autonomously, outside of any ongoing control loop, in order to achieve or 

pursue any number of different goals. A cognitive probe is an adaptation initiated by the 

system in order to gauge the user’s response to it. The responses to different adaptations are 

registered along with their contexts in a user model. With an increased number of context-

probe-response samples, the model increasingly accurately describes various aspects of the 

user’s (cognitive) behaviour, such as preferences and goals. It is these inferred, higher-level 

preferences and goals, finally, that form the basis of user-supportive adaptations—not 

merely the current context and neurophysiology. 

 

MATERIALS AND METHODS 

 

In a cursor control task, the cursor was autonomously controlled by the system. Probes 

consisted of cursor movements into random directions. Movements were restricted to a grid 

with up to eight possible directions. EEG was recorded from 19 participants passively 

observing these movements. The responses recorded from the EEG represented approval or 

rejection of the observed movement. This signal was automatically induced by the cursor 

movements and not consciously modulated. After a number of probes, the user model thus 

contained information concerning the preferred direction of movement. The system could 

now guide the cursor towards the correct direction. See [1] for details. 
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RESULTS 

 

Figure 1 displays the average improvement in cursor performance. The system did not know 

where the user-intended target was, and the user did not know it had any influence on the 

system-controlled cursor. However, using automated neuroadaptation, the cursor effectively 

found its way to the target. 

 

 

Figure 1: Cursor performance on two different grid sizes. ‘Random’ indicates cursor 

performance without neuroadaptation, ‘online’ with neuroadaptation, and ‘perfectly 

reinforced’ is the theoretically optimal performance given the constraints of the paradigm. 

 

 

CONCLUSION 

 

We have demonstrated a system that automatically ‘probes’ for information in order to learn 

and adapt to its user’s preferences, without the users being aware of these preferences being 

transmitted 
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ENDOWING THE MACHINE WITH ACTIVE INFERENCE:  

A GENERIC FRAMEWORK TO IMPLEMENT ADAPTIVE BCI 
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ABSTRACT: Recent developments in computational neuroscience gave rise to an efficient 

generic framework to implement both optimal perceptual (Bayesian) inference and choice 

behaviour. This framework named Active Inference rests on minimizing free energy or surprise 

[3]. We suggest it could be used to implement efficient adaptive Brain-Computer Interfaces 

(BCIs). We briefly illustrate it on a simulated P300-speller task. 

 

INTRODUCTION  

 

BCIs still suffer from poor reliability which can be attributed to the highly variable, noisy and 

incomplete nature of brain signals that need to be interpreted online. However, this challenge 

is very similar to the one faced by Robotics, or by any Human-Computer Interfaces where an 

artificial agent has to implement perceptual abilities to interpret its environment and decide how 

to act optimally. BCI is quite challenging though, because it is also facing the lack of 

fundamental knowledge to define appropriate features. The precise mappings between the 

targeted user mental states or intentions and some specific features of brain activity remain 

unknown. This renders the BCI challenge very acute. 

To overcome these limitations, several authors have highlighted the need for adaptive 

approaches able to cope with noisy brain signals [4, 5, 6, 7, 8]. However, many of these adaptive 

approaches do not explicit the relationship between the modulation of the brain signals and the 

factors related to both the task and the user. Yet, the Good Regulator theorem states that “Every 

good regulator of a system must be a model of that system” [1]. In BCI, the system to be 

regulated is the triplet: {user, task, signal processing pipeline}. Hence to implement an optimal 

adaptive BCI, this theorem prescribes to use an explicit model of that triplet. The signal 

processing pipeline is already part of the machine. The tricky part is thus to implement a model 

of the user and the BCI task. 

 

METHODS  

 

The Bayesian modelling framework is a powerful and generic one. A recent Bayesian approach 

has been proposed to cast human perception and action within a common - Active Inference - 

framework [2]. In Active Inference, the human brain makes use of a model of its environment, 

including the task to accomplish.  We propose to endow the machine with Active Inference (see 

Fig. 1.a), hence with adaptive behaviour through optimized perceptual inference and action. We 

use a discrete formulation of that model, which we exemplify on a simulated P300-speller BCI. 

The model entails three main components (see Fig. 1.b): the data likelihood (prescribed by 
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matrix A), that maps the model hidden states st to observations ot at time t; the priors over 

hidden states (prescribed by matrix B), which formalize likely state transitions, given the 

control states (or actions) ut of the machine; and the preferences or prior probabilities that a 

final outcome will be observed (prescribed by vector C). Finally, parameter 𝛾 defines the 

exploration-exploitation tradeoff for action selection.  A, B, C and 𝛾 have to be specified 

beforehand by the BCI designer, so as to estimate st and ut online, from ot. 

 

 

Figure 1: (a) BCI closed-loop where the machine is endowed with a model of the task and the 

user which subsumes its perception of EEG commands and prescribes its action; (b) Generic 

form of the (Bayesian) Markov Decision Process implementing Active Inference. (adapted from 

[2]). 

 

RESULTS  

 

With the P300-speller, time amounts to trials. Each trial t yields a single action ut: “flashing a 

group of items” or “sending the feedback of the chosen item”. Hidden state st refers to the user’s 

state of mind one has to infer: “I just saw my target flashing”, “the flashed items did not contain 

my target” or “I saw a feedback and now change target”. This simple model already enables to 

implement two adaptive features: optimal stopping but also optimal flashing. The later refers to 

moving away from a pseudo-random sequence of flashes (method M1) by optimally choosing 

the group of items to flash next which best reveal the target (method M2). Comparing M1 and 

M2 on one hundred simulated spelled items, we could show that M2 is both more accurate 

(85.2% vs. 80.6%) and faster (15.8±6 vs. 20.1±9 flashes).  

 

CONCLUSION 

 

These preliminary results demonstrate the face validity of this new approach and further 

illustrate how it can easily provide additional and new adaptive behaviour, namely optimal 

flashing. Future work will consider real data while ensuring that the flashing sequence complies 

with the oddball paradigm. 
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ABSTRACT: A brain-computer interface (BCI) translates neuronal signals into control 

commands. We propose a new design in which the stimulus presentation works together with 

the machine learning model to allow for an adaptive decoder that can learn from scratch without 

requiring any calibration session. This so-called learning from label proportions (LLP) based 

BCI was tested successfully in an online EEG study with 13 subjects. LLP is the first method 

for classification of unlabelled ERP signals with the theoretical guarantee to converge to a high-

quality decoder. 

 

INTRODUCTION 

 

In BCI, the stimulus presentation and machine learning model are often regarded to be separate 

entities. Previous studies aimed at improving the signal-to-noise ratio of the data, e.g. by 

enhancing the saliency of the stimuli [1-4] or avoiding confusion between different stimuli [1, 

5, 6]. Other approaches improved the machine learning model [7-10]. We introduce learning 

from label proportions (LLP) [11, 12] to the BCI community [13], a semi-supervised approach 

in which known proportions of different classes in different groups of the data are used to derive 

statistics about the individual classes. In BCI, this represents a synergistic approach where the 

machine learning model can be made more powerful by tweaking the stimulus paradigm. 

 

MATERIALS AND METHODS 

 

We modified a visual event-related potential (ERP) speller to meet the requirements of LLP by 

splitting the train of 68 stimuli to spell one letter (with 4 stimuli per second) in repetitions of 

two interleaved sequences of length 8 and 18 which have different target to non-target ratios. 

These known ratios are subsequently used to approximate the average target and non-target 

ERP responses (see Fig. 1). Based on these continuously improving class mean estimations, a 

regularized linear discriminant analysis classifier [7] was trained. 

 

RESULTS 

 

An online EEG study with 13 subjects performing a copy-spelling task showed that the 

proposed LLP approach works well with an average of 84.5% characters decoded correctly 

(standard deviation across subjects=16.9%, chance level=3%) [13]. Furthermore, the LLP 

method has the following desirable theoretical property. Under the assumption of independent 
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and identically distributed data points, the mean estimations are converging to the true class 

means, and hence, one can show that the decoder is converging to the ideal supervised solution 

which one obtains when knowing the user’s intention for all (online) trials. 

 

DISCUSSION 

 

The necessity of frequent (re-)calibration is a major shortcoming of current BCI systems. To 

circumvent this, we proposed the adaptive LLP approach which utilizes a modification of the 

stimulus presentation to reliably learn the target and non-target class means even without access 

to class labels. This was not possible using previous unsupervised methods. Therefore, this is a 

prime example of how the information theoretical background of a classifier can be used to 

modify the presentation paradigm to, ultimately, lead to a more robust BCI. 

 

CONCLUSION 

 

By modifying a visual ERP speller, we could introduce a new decoder which is guaranteed to 

converge to the optimal decoder given enough (unlabelled) data. 

 

 
 

Figure 1: LLP principle. (A) A train of stimuli (i.e. spelling one character) consists of several 

repetitions of two interleaved sequences.  

(B) Sequence 1 highlights more normal characters (potential targets) than sequence 2, which 

highlights more visual blanks (‘#’ symbols that are not attended by the user and as such are 

non-targets by definition), resulting in a higher target ratio for sequence 1 than for sequence 2.  

(C) Average target and non-target ERP responses can be approximated with LLP based on the 

known target and non-target ratios of both sequences. 
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ABSTRACT: The statistical analysis of fNIRS data with a General Linear Model is often made 

difficult by serial correlations, intersubjective variability of the hemodynamic response and 

presence of motion artifacts, all of which make some steps in the preprocessing of the data 

particularly crucial to be able to correctly model it. Here we explore the possibility of extracting 

information on the pattern of hemodynamic activations without using any a-priori model for 

the data, by classifying the channels as activated or not activated with Regularized Linear 

Discriminant Analysis. 

INTRODUCTION  

Functional Near Infrared Spectroscopy (fNIRS) is a neuroimaging technique based on the 

measurement of the optical absorption of cerebral blood. Thanks to the different absorption 

spectra of oxygenated and deoxygenated Hb (HbO and HbR, respectively) in the near-infrared 

region (650-900 nm), it is possible to estimate their relative concentration changes [1]. To assess 

if an increase in the local neuronal activity is significant, typically a general linear model (GLM) 

is used to model the measured data Y as Y= Xß + ε, where X is the design matrix, embedding 

the expected hemodynamic responses according to the stimulus design, ß are the regressors, 

representing the effect of each condition on the responses, and ε defines the measurement error 

[2]. For the estimation of ß to be valid, the noise must have zero-mean and be spherical (“white 

noise”); these assumptions are generally greatly violated by fNIRS data, due to physiological 

noise, temporal and spatial correlation of the samples, and presence of artifact [3]. For this 

reasons, the method is susceptible to yielding high false discovery rates. A successful approach 

to overcome the problem is to pre-filter the data with a whitening filter to remove structured 

noise from the residual term ε, with the autoregressive iteratively reweighted least squares 

algorithm presented in [4]. As an alternative to this, we propose to use Regularized Linear 

Discriminant Analysis [5] to classify NIRS signals in two classes: activation and no-activation. 

The advantage of such a method is that no assumptions on the structure of the noise are 

necessary and no prior knowledge is needed on the shape of the expected hemodynamic 

response. Furthermore, GLM analyzes the data with a univariate approach, by investigating 

time traces from HbO and HbR independently; with LDA, information from simultaneous 

variations of both hemoglobin components could be combined in a multivariate strategy to 

search for activations. 

MATERIALS AND METHODS 

500 synthetic sets of fNIRS data were simulated by producing temporally correlated noise and 

hemodynamic response functions (HRFs, peak amplitude: 0.04-0.2 µM). The design matrix 
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comprised a set of 8 trials (10 seconds duration, 30 seconds on average between markers). HRFs 

were added only to half the channels (true active channels). The data were analyzed with both 

GLM, with pre-whitening, and LDA with shrinkage [6]. For the latter, amplitude and slope of 

the signal after stimulus were employed as features [7] and 10-fold cross validation were 

performed. Features obtained from HbO and HbR of the same channel were combined. 

RESULTS 

The performances of the GLM and the LDA classifier were evaluated with a ROC analysis 

(Fig.1A) and in terms of classification accuracy (Fig.1B). 

 

Fig. 1: A) (left) Sensitivity-Specificity of GLM (HbO and HbR channels are analyzed separately) and of LDA on features 

extracted from simultaneous HbO and HbR. B) (right) Classification accuracies, defined as %(True Positives +True Negatives) 

DISCUSSION 

The analysis with LDA reaches results comparable to the GLM with pre-whitening, without the 

need for an a-priori knowledge of the noise model or the expected shape of the HRF. The next 

step will be to check the robustness of this analysis with real data, with special focus on data 

contaminated by the presence of motion artifacts, which is a frequent experimental situation 

when doing an fNIRS experiment on certain populations of subjects, such as children.  
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ABSTRACT: The utility of brain-computer interfaces (BCIs) is often limited due to their need 

for within-subject or within-domain calibration. Here, we train a Deep Learning (DL) model to 

generalize to unseen domains (in our case, experimental paradigms) in which similar neural 

responses are expected. We build on prior results demonstrating DL’s cross-domain capability 

and investigate how the composition of the training set can improve both performance and 

generalization of the system. 

 

INTRODUCTION 

 

While much BCI research is devoted to user-user transfer [1], BCI models must also transfer to 

unseen scenarios. In other words, to be effective these systems must work in scenarios that 

extend beyond the basic confines from which they were trained. Here, we build upon our 

previous domain transfer results [2] and evaluate how different training sets affect the model’s 

ability to generalize to unseen test sets. Our long-term goal is to build a more robust 

generalizable system that can isolate specific responses across data sets in the face of potentially 

confounding components. 

 

MATERIALS AND METHODS 

 

We train models on: 1) a fixation-related potential (FRP) dataset (3000 trials) where subjects 

fixated on stimuli and pushed a button in response to targets, 2) a 2 Hz rapid serial visual-

evoked potential (RSVP) dataset (3000 trials) in which subjects counted the number of targets 

present, 3) their down-sampled combination (3000 trials) and 4) their full combination (6000 

trials). These 3000 and 6000 trials are subsampled from the full datasets to shed light on data 

size vs data ‘content’ effects. We train, and average results over, 10 folds of each model. We 

test on two hold out experiments: a free-viewing (FV) target discrimination task where subjects 

looked for, fixated on, and pressed a button in response to targets, and a 1 Hz event-locked 

visual-oddball (VOB) task with no button presses. All data sets were previously analyzed to 

contain a P300 response on target trials. We use the EEGNet DL model [3], and use Balanced 

ccuracy (BA) as our performance metric. 
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RESULTS 

 

For the VOB test set, model 1 (FRP) performs significantly worse than the other models 

(p<0.01). For the FV test set, model 2 (RSVP) performs significantly worse than the others 

(p<0.01). Model 4 (RSVP+FRP with 6000 trials) outperforms model 3 (RSVP+FRP with 3000 

trials), though insignificantly, for both VOB (p=0.059) and FV test sets (p=0.209). 

 

DISCUSSION 

 

When trained on a single data set, models may fit to all domain specific discriminative features, 

generalizing poorly to the test set where those features are absent. For example, for model 1 

(FRP) the discriminative activity is a combination of the P300 and button presses in target trials, 

and the FV test set, which has the same features, performs better with model 1 than with model 

2 (RSVP). 

The VOB test set instead performs better with model 2, with which it shares the same P300-

only discriminative activity. Models 3 and 4 capture the best performance of models 1 and 2. 

From these results, we believe that these models either 1) learned a more generalized 

representation of the P300, or 2) independently captured features of both training sets. Also, the 

modest improvements with more training trials indicate a potential benefit of adding more 

similar domains to the training set. 

 

CONCLUSION 

 

These results further indicate that cross-domain transfer is possible with DL BCI models. While 

similar experiments transfer well to each other, detection of a P300 signal across different 

experiments shows improvement as the model is forced to generalize across domains. 
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ABSTRACT: Spatial filters are useful tools for the analysis of EEG data. Their quality 

strongly depends on the choice of hyperparameters. We present a hyperparameter sensitivity 

analysis which reveals the range of validity and quality of single-trial oscillatory components 

for a given experimental context. The analysis is not restricted to a specific choice of spatial 

filtering algorithm. 

 

INTRODUCTION 

 

Spatial filtering algorithms are utilized to enhance the low signal-to-noise ratio of EEG data. 

Supervised spatial filtering approaches allow to extract oscillatory components which explain 

single-trial label information [1]. They can be applied e.g. to predict single-trial  performance 

of a motor task [2]. However, the performance of spatial filters is strongly influenced by the 

selection of time-frequency hyperparameters. In this work, the stability of an oscillatory 

component with respect to these hyperparameters is characterized. 

MATERIALS AND METHODS 

In [2], we studied a repetitive hand motor task by recording EEG activity. In our analysis, we 

identified robust pre-trial oscillatory components whose bandpower correlated with single-

trial motor performance. The components were computed with a supervised spatial filtering 

method (SPoC, [2]) using trial-wise continuous labels. The spatial filters were trained using 

epoched multichannel EEG data on a 750 ms wide time interval relative to time ttrain.  In 

addition, data were filtered to a passband of 1.5 Hz width around the central frequency ftrain. 

For this abstract, we selected a single, representative spatial filter and tested its performance 

with novel, randomly chosen time-frequency hyperparameter pairs (ttest, ftest) on the same data 

set. For characterizing the sensitivity of the component with respect to varying 

hyperparameters, the z-AUC performance based on the derived bandpower features with the 

known labels is reported (for details see [2]). 
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Figure 1: (a) Characterization of an exemplary SPoC component derived by parameters (ttrain, 

ftrain).(b) Performance for varying pairs of hyperparameters (ttest, ftest) illustrated by single black 

dots. The chance level is marked by the blue-rimmed z-AUC values. 

 

RESULTS 

 

The chosen value for ftrain obviously was slightly sub-optimal (see Fig. 1). While stable 

performance is maintained in the vicinity of the original hyperparameter pair, stronger 

variations lead to a drop-off in single-trial performance. 

 

DISCUSSION 

 

Our approach realizes an in-depth characterization of an informative oscillatory component 

for a pair of hyperparameters (here: time-frequency parameters). By that, the component’s 

range of validity in the experimental context is accessible. 

 

CONCLUSION 

 

The methodology serves to optimize and judge the quality of spatial filters. It is not restricted 

to a specific choice of spatial filtering algorithm. 
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ABSTRACT: Adaptive neurotechnology is a promising technique in automated driving due 

to its potential to keep driver and vehicle connected despite the vehicle’s partly autonomous 

behavior. We recorded EEG, ECG and EOG during partly automated driving, and examined 

responses to different types of (un)expected events associated with automated braking. We 

conclude that physiological responses can be informative, depending on the relevance of the 

event and alertness of the driver. 

 

INTRODUCTION 

 

While automated driving may improve comfort and safety, it removes the continuous 

communication between human and machine through using gas pedal, braking and steering. 

Automated actions (such as braking by an Adaptive Cruise Control system to reach a slower 

speed) are performed in the same way, regardless of driver state. To preserve the link between 

driver and vehicle, automated driving may benefit from another, implicit way of 

communication with the driver: neuroadaptive technology. 

 

MATERALS AND METHODS 

 

15 participants, driving a circular track, activated an ACC after the desire to either brake 

‘strongly’ or ‘softly’ was aurally presented. Following ACC activation, the car announced 

whether it was going to brake strongly or softly, and subsequently performed this type of 

braking. The car’s announcement was in line with the wish in 240 (match) trials, and 

opposite in 60 (mismatch) trials. 64 channel EEG, EOG, and ECG were recorded. 

Classification models were trained using EEG. 

 

RESULTS 

 

ERP responses to the ‘strong’ and ‘soft’ announcement of the vehicle differed (63% single 

trial classification accuracy). Heart rate and blink duration increased when strong compared to 

soft braking was announced, consistent with a higher state of arousal or startle. However, this 

was only found for the first half of the trials, when the driver was expected to be more alert 

and engaged - as also evidenced by decreasing heart rate, and increasing EEG alpha and blink 

duration over the duration of the experiment. ICA cleaning of the EEG data resulted in more 

stereotypical ERPs for certain electrodes but did not improve classification accuracy. We did 

not find any difference in any of the (cleaned) signals between match and mismatch trials. 
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DISCUSSION 

 

While we had expected to observe differences between matches and mismatches in EEG error 

related activity and ECG or EOG arousal or startle measures, we did not find this. However, 

we did observe effects of the announced type of braking in all physiological measures (at the 

start of the experiment). Whether the vehicle is going to brake strongly or softly is arguably 

more relevant for the drivers, especially when they are still alert and interested, than whether 

the system’s action matched expectation such as operationalized here. Thus, our results 

suggest that neurophysiological measures can convey information about to the driver’s mental 

response to actions of an automated driving system, but only when these actions are 

sufficiently relevant to the driver at that time. Future studies and applications should consider 

collecting training data in the lab to mitigate the lengthy collection of field data (causing 

events to loose relevance). Applications may focus on information as collected over time 

and/or over participants e.g. for evaluation purposes rather than the utilization of data in real-

time, on a single-trial basis. Likewise, peripheral signals may be combined with brain signals 

for better estimation of the driver state. 
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ABSTRACT: Concentration is the ability of mind to maintain focusing on an attended task 

while ignoring distractions. Related studies thus far evolve into the examination of 

Electroencephalography (EEG) signal analyses. EEG is electrophysiological monitoring 

method that detects and tracks the brain’s electrical wave patterns for diagnosing brain 

disorders. The potential differences between the sensors (electrodes) attached on scalp are 

measured, recorded, and processed by computer. This study intends a data analysis of 

concentration measurements yielded by EEG tests to be conducted on a group of volunteer 

subjects that will be exposed to normal and various adverse physical, mental conditions. 

However, measurement periods and data magnitudes necessitate big data processing. Therefore 

classification of big data shall be performed by Deep Neural Network, an advanced type of 

artificial neural network based methodology. 

 

INTRODUCTION 

 

Classification of EEG signals by ANN is the foremost technique implemented in Human 

Machine Interaction (HMI) studies. This approach is efficient, becoming widespread in rapid 

detection of early indications of crisis [1]. This study delineates an ANN based computational 

model for processing the EEG signals and therewith measures human mind’s concentration 

levels. 

 

MATERALS AND METHODS 

 

The electrical brain activities throughout varying psychological states are collected as EEG 

signals are tracked collected and recorded; datasets are formed and processed; classified with 

Deep Neural Networks and then concentration levels are detected. The main objective of the 

project is to discriminate between different levels of concentration in terms of alertness and 

focused attention. 

For alertness, response time will be evaluated to rate levels. A sample experimental setup will 

include computer games in which user is asked to click instantly appearing targets on the screen 

or control an object to avoid obstacles. In another setup, user presses button following a 

stimulant (sound or image) emerges. Focused attention or response time is measured by scores 

collected during cognitive games such as finding a missing object (or person) in two 

consecutive images, rearranging numbers and recognition of cards or order of objects’ 

movements. The measured criteria (score or response time) will be scaled into an interval 

[0,100]. However since an average performance depends on age, limits will vary [2]. Therefore 
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statistical information shall be taken into consideration in determining age-based evaluation. At 

the outset, system’s learning is figured as offline.       

  

RESULTS & DISCUSSION 

 

Collection of EEG generated data shall obviously be time indefinite, prompting a big data 

involvement. ANN is a robust classification technique for coping with the challenges of big 

data environment such as compilation time and accuracy. To begin with, the subject who is 

under the physical condition of well-being, contentment or relief from pain or stress, is 

presented a set of brainy games aimed at cognitive capacity (i.e. attention, memory, flexibility, 

speed etc.) System is trained on the basis of individual EEG data obtained from that subject 

during his/her performance. Then, subject is re-examined while he/she is under the exposure of 

abnormal circumstances (restless, exhaustion, hunger, etc.) and related EEG data is loaded to 

system. System shall make the classification according to game results and in the view of 

corresponding EEG data. 

 

CONCLUSION 

 

Trained datasets will enable the system to measure the concentration level of the same subject 

any time by applying similar games or training tools. Long haul airliner pilots or fighter pilots 

constitute suiting subjects where standard simulator flights shall replace the games for system’s 

training. As for the rest, system extracts relevant real time data on board during the flight and 

thus accomplishes concentration level measurements and monitoring. 
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ABSTRACT: Emotion research in Human-Technology Interaction (HTI) mainly employs 

subjective, explicit methods. Our study investigates implicit attitudes underlying the user’s 

emotional experience during HTI. 12 Participants were put in two interaction scenarios 

featuring events that either induced positive or neutral emotional states. Approach and 

avoidance tendencies towards snapshots of these emotional events were assessed by 

electroencephalographic (EEG) recordings during the Approach Avoidance Task (AAT). 

Analysis of event-related potentials (ERPs) showed significant higher cortical activity in the 

frontal cortex around 300ms for approach tendencies towards snapshots from the positive 

scenario. Higher potentials in the parietal cortex were found for avoidance tendencies towards 

the neutral scenario. The findings show that positive and neutral attitudes during HTI can be 

distinguished based on neuroelectrical data. 
 

INTRODUCTION 

 

HTI research has an increased interest in understanding the user’s emotions when interacting 

with technology [1]. Studies in this domain mainly use explicit, subjective methods, e.g. 

surveys, while more implicit components of the user’s emotions that cannot be assessed by 

introspection [2] re-main largely unexplored. Our study investigates implicit attitudes during 

HTI based on EEG and behavioural data. After interacting with two different versions of an 

ideation software (pUX: a version designed to induce a positive emotional user experience, and 

nUX: without any emotional features; previously validated through HTI expert reviews and 

user testing), participants’ approach and avoidance tendencies towards the two versions were 

assessed by the AAT [3]. After interacting with pUx and nUX, Representative snapshots from 

the interaction sequences were used as visual stimuli for the AAT. EEG was recorded to 

investigate the neuronal activity underlying implicit attitudes. We expected (1) smaller reaction 

times (RTs) for approach-pUX than avoid-nUX, and higher for avoid-pUX than approach-nUX, 

(2) a significant difference in the ERP between pUX and nUX, (3) a higher P300 for congruent 

(approach-UX, avoid-nUX) than for incongruent stimuli (avoid-UX, approach-nUX), as P300 

is modulated by stimulus-response compatibility [4]). 
 

MATERIALS AND METHODS 

 

Participants (n=12, M𝑎𝑔𝑒=24.42) were exposed to both software versions. RT differences were 

calculated for congruent and incongruent stimuli for pUX and nUX. EEG was used to examine 

ERPs during the AAT. Signed r²-values were calculated defining time windows of interest 

(TOIs). TOIs were entered in a cluster-based, non-parametric randomization approach 

including correction for multiple comparisons between approach and avoidance trials for pUX 

and nUX. [5,6].  
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RESULTS 

 

The RTs of the AAT showed no meaningful differences. The ERP analysis revealed significant 

dif-ferences in the P300 potential (Fig. 1), i.e. higher potentials for approach-pUX in frontal 

and motor electrodes and higher potentials in bilateral centro-parietal electrodes for avoid-nUX 

combinations. 
 

 
Figure 1: ERP signal comparison – congruent vs. incongruent trials of pUX and nUX stimuli.  

The topographical plots on the left and in the middle column represent the conditions 

‘congruence’ vs. ‘incongruence’ per pUX or nUX stimuli and show the spatial topographies of 

the grand-average voltage distributions (colour-coded in µV) in the selected time interval of 

P300. The column on the right shows the t-value topographical differences between 

‘congruence’ and ‘incongruence’. Black filled circles indicate significant electrode clusters. 

The blue colour displays an increase in negativity, while the red colour displays an increase in 

positivity.  

 

DISCUSSION 

 

The results suggest that positive implicit attitudes during HTI are represented by increased 

frontal cortex activity and less positive (neutral) ones by increased parietal activity.  
 

CONCLUSION 

 

We found that positive attitudes can be distinguished from neutral attitudes based on 

neuroelectrical data. This dissociation was not reflected in the RTs, which suggests that EEG is 

a promising tool to assess implicit attitudes during HTI that are too weak to be visible from the 

user’s behaviour.  
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ABSTRACT: We recorded error-related signals with non-invasive electroencephalography 

(EEG) in an optimized environment. For the first time, we show the feasibility of between-

subject transfer learning for decoding of error-related signals with a suitably large subject 

group. Our findings could thus help to facilitate the development of adaptive brain-computer 

interfaces (BCIs). 

 

INTRODUCTION 

 

In order to assist paralyzed patients effectively with the help of BCIs, even state-of-the-art 

decoders are not satisfactory in real-life use, and reliable error-detection could improve their 

practicability significantly [1,2]. Moreover, the ability to use a pre-trained decoder on new users 

without extensive training could enable a more efficient use of adaptive BCIs. To this end, we 

compared state-of-the-art decoding methods commonly used with EEG data for error decoding 

across subjects. As our main result, we demonstrated the feasibility of using a pre-trained rLDA 

classifier for decoding of motor response errors in unknown subjects. 

 

MATERIALS AND METHODS 

 

30 healthy subjects participated in a study using 128-channel high-density EEG and an Eriksen 

flanker task paradigm, as classically used to study error-related signals [3,4,5], with 1000 trials 

per subject. EEG was recorded employing waveguard caps (ANT Neuro, Netherlands) and 

NeurOne amplifiers (Mega Electronics Ltd., Finland) with a sampling rate of 5 kHz in an 

electromagnetically shielded cabin. We evaluated regularized linear discriminant analysis 

(rLDA), optionally with filter bank common spatial patterns (FBCSP) feature extraction, and 

artificial neural networks (ANN) in a 10-fold cross-validation. After a preceding 

hyperparameter optimisation within subjects, we either used power features from 2 to 8 Hz, or 

voltage features from -0.5 to 1 s relative to EMG onset as classifier input. Transferability of the 

best classifier was tested using inter-subject cross-validation. 
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RESULTS 

 

An rLDA classifier yielded the best accuracy in discriminating correct and erroneous responses 

(Tab. 1). Between-subject classification was tested both with features of all 128 electrodes and 

of 7 selected midline electrodes that were expected to exhibit the strongest error-related 

activations. Using all channels, the optimal sampling rate range was 1.25 - 25 Hz with 70.39 ± 

1.02 (mean ± SD) normalized accuracy (Fig. 1A). In the case of the midline electrode selection, 

the optimal range for error decoding was between 25 - 125 Hz with 76.04 ± 0.31 % decoding 

accuracy (Fig. 1B). For all methods, the total classification accuracy was above chance level at 

p < 0.001 (sign test [6]). 

 

Table 1: Comparison of classifiers & features for decoding of error-related signals in 

EEG. 

The decoding accuracy ± standard deviation was calculated for different approaches in a within-

subject 10-fold cross-validation. Normalized accuracy was defined as average accuracy of 

correct and erroneous trials; in that way, the unequal number of trials in the two response 

conditions had no distorting effect. The table shows the mean accuracy of the subject 

population. As identified via hyperparameter optimisation, features were extracted from 7 

midline channels (Fpz – POz). 

 

Classifier Features Accuracy correct 

trials (%) 

Accuracy error 

trials (%) 

Normalized 

accuracy (%) 

rLDA FBCSP (Voltage) 79.8 ± 7.6 70.7 ± 8.9 75.2 ± 7.2 

rLDA Voltage 84.0 ± 8.6 77.8 ± 8.2 80.9 ± 7.8 

rLDA Power 81.9 ± 8.8 67.8 ± 13.9 74.8 ± 8.2 

ANN Voltage 90.3 ± 6.5 61.6 ± 10.2 75.9 ± 6.3 

ANN Power 91.0 ± 6.7 60.9 ± 9.0 75.9 ± 6.5 
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Figure 1: Between-subject transfer learning for error decoding using an rLDA classifier. 

We evaluated between-subject classification accuracy with a leave-one-subject-out cross-

validation. A) Signals of all 128 EEG channels as decoding features. Here, resampling to lower 

sampling rates resulted in better decoding accuracies, with a maximum of 71.48 % at 1.25 Hz. 

B) Voltage Features of selected channels (Cz, CPz, FCz, Fz, Pz, POz, Fpz), cp. Tab. 1. In that 

case, higher sampling rates yielded the best mean decoding accuracies, peaking at 50 Hz with 

76.45 %. 

 

DISCUSSION 

 

In this study, we show that between-subject transfer learning for error decoding in non-invasive 

EEG is possible. An rLDA classifier offered the best performance with voltage features, as 

other publications also showed [7,8]. As a leave-one-subject-out cross-validation with different 

numbers of channels and sampling rates revealed, selection of informative decoding features 

improved the classification accuracy. Notably, when using a selected group of channels, higher 

sampling rates up to 150 Hz resulted in an improvement of classification accuracy, suggesting 

that frequencies in the gamma band range might hold decisive signals for classification of 

response errors.  

 

CONCLUSION 

 

Pre-training of classifiers to enable transfer learning may generally facilitate BCI development. 

As next step, we want to test deep convolutional neural networks to potentially improve the 

accuracy and generalization ability of EEG-based error classification further. 
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ABSTRACT: This work examines the postulated relationship between the processing of a 

regular, rhythmic beat and EEG activity in the beta band. We combine an experimental 

approach of auditory regularity processing with a machine-learning based analysis pipeline 

targeting beta band power and its modulation by the beat. We show a significant difference in 

beat-related, beta-band power modulation for the processing of regular compared to irregular 

sequences at the group level. Future work will test the behavioural relevance of beta band 

activity, and target their possible use in BCI.  

 

INTRODUCTION  

 

The ability to process and detect a more or less regular “beat” is essential to our perception of 

both music and speech [3]. In search for neural correlates of “feeling the beat”, previous 

research has described effects in the beta band of the EEG, typically showing one peak, i.e. 

synchronisation and one trough, i.e. desynchronisation per beat cycle for regularly but not 

randomly timed sequences [5, 6, 7]. We here tackle those beta power modulations in a 

customized analysis pipeline using Spatio-Spectral Decomposition (SSD) [1] and Source Power 

Co-modulation (SPoC) [2]. This approach allows us, in a hypothesis-driven way to extract the 

maximally relevant EEG source-space component, and test for the presence of beat-based 

modulations in beta-band power.  

 

METHODS 

 

The experiment was an active listening task, using sequences of 9-11 tones, of different tempi 

(340, 400, or 460 ms) and degrees of irregularity (jitter: 0% to 30%) [4]. EEG data were high-

pass filtered (0.2Hz), segmented into 2 beat-period epochs, onset-aligned with even tones; 

evoked activity removed by subtracting the ERP. SSD was applied to maximize signal power 

in the beta band (15-25Hz), followed by SPoC analysis to extract the source component with 

the largest co-modulation of time-resolved beta power and beat frequency. Time-frequency 

analysis (TF) using Morlet wavelets was applied to the SPoC component’s time course in order 

to extract beta band power modulations. Finally, frequency content of modulations in beta 

power was assessed by Fourier analysis of the envelope time courses obtained from TF (FFT-

of-TF). Parameters of this analysis pipeline were trained at participant level, on the EEG data 

from tones 2, 4, 6 from 0% jitter (324 epochs/participant). Results were then tested on epochs 

of tone 8 for 0% and 30% jitter (216 epochs/participant).  
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RESULTS 

 

Fig. 1 shows TF spectrograms of the SPoC component, limited to the beta band, averaged across 

epochs and participants. The figure also shows FFT-of-TF results, with FFT bins corresponding 

to beat-frequency (and harmonics) highlighted. Statistical comparison of the relative 

modulation power (calculated as the mean difference in power to its two neighbouring sample 

points) for 0% vs. 30% jitter yields a borderline significant difference averaged across tempi 

(p=0.05; paired t-test for local peak at the beat frequency). 

 
Figure 1. Results of the wavelet and FFT analyses, comparing 0% and 30% jitter, shown for the middle tempo 

(400 ms) 

 

DISCUSSION 

 

Our present EEG analysis compared hypothesised beat-based modulation of beta band 

oscillatory activity for the processing of highly regular (0% jitter) vs. highly irregular (30% 

jitter) sequences. Using a customised machine-learning based analysis pipeline enabled us to 

obtain maximally relevant source space components at the individual level. Whilst the beta-

band peaks and troughs appear less clear than in previous reports, we demonstrate a group-level 

difference in beat-based modulation of beta band power for regular compared to irregular 

sequences. Further work is needed to find out whether this modulation is an epiphenomenon or 

a relevant feature of rhythm processing [8] and decide whether and how to implement their 

intended future use in auditory BCI.  

 

CONCLUSION 

 

The data provide limited support for the beat-based modulation of beta power during auditory 

rhythm processing of sequences with a regular beat compared to irregular ones. 
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ABSTRACT: The problem of brain rhythm power estimation arises in implementation of real-

time EEG paradigms such as neurofeedback (NFB) or brain-computer interface (BCI) [1]. 

Fundamentally, the need to estimate band power requires time and therefore the estimated 

rhythm power is delayed which hinders the efficiency of NFB learning and slows down BCI 

applications. We propose a method to estimate band power using the complex demodulation 

approach followed by the minimum-phase implementation of Savitzky–Golay filter [2]. 

Compared with classical methods, the proposed approach reduces the delay and preserves the 

quality of power estimation. 

 

INTRODUCTION 
 

Brain rhythm power estimation is by far the most frequently used module in the BCI or NFB 

processing pipeline. Fundamentally band power estimation incurs delay. The accuracy of 

envelope estimation and the required time both influence NFB and BCI tasks efficiency and 

thus can be used to benchmark envelope extraction techniques. Classic approaches for real-time 

band power estimation, such as causal filtering followed by the envelope detection or sliding 

window based Fourier transform introduce delay (with fixed smoothnesses of output signal) 

which is comparable to the average brain state duration of 250-300 ms. Here we propose a 

method that allows to reduce the delay as compared to classic approaches currently employed 

in the field. 

 

METHOD 
 

To extract the envelope, we first perform complex demodulation (CD) of the input signal by 

multiplying it with a complex exponential sequence with the argument corresponding to the 

central frequency of the band of interest. This transposes the spectrum of the signal so that the 

band of interest central frequency is aligned with f = 0. First order Butterworth low-pass 

concludes the complex demodulation step and yields the envelope estimate which is then 

smoothed with a minimum-phase proxy of Savitzky-Golay (SG) polynomial filter with frame 

length of 151. 

 

RESULTS 

 

The developed method was tested on the model and real data and benchmarked against several 

other techniques. Figure 1 shows the performance of the proposed approach (CD-SG) as 

compared against two basic methods – windowed short-time Fourier transform (STFT) and 1-

st order Butterworth filter followed by the envelope detection (BE). The ground truth signal 

was obtained by non-causal order 2000 finite impulse response band-pass filtering, which 

cannot be performed in real time. An example of the band power reconstruction for a real data 
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segment (250 Hz sampling rate) is shown in Figure 1.a. The comparison of efficient delay (Fig. 

1.b), reconstruction accuracy (Fig. 1.c) and relative smoothness (Fig. 1.d) for three different 

envelope estimation methods illustrates that CD-SG approach results in the smallest delay and 

the highest smoothness and yet yields high envelope reconstruction accuracy which has a 

potential to improve the efficiency of the real-time EEG paradigms. 

 

 
 
Figure 1. Band power reconstruction for a real data segment: a. example of the bandpower reconstruction: 

yellow – the ground truth squared signal and corresponded envelope, red – proposed method band power 

reconstruction, blue – STFT band power reconstruction, green – BE power reconstruction, b. efficient delay 

for the three envelope estimation methods,  c. reconstruction accuracy (correlation between reconstruction 

and the ground truth), d. relative smoothness of reconstruction (ratio of 2-nd order discrete difference of 

ground truth signal and 2-nd order discrete difference of reconstructed signal). 

CONCLUSION 

The proposed method allows for express estimation of brain-rhythm power and is implemented 

as a part of the in-house developed software for EEG/MEG neurofeedback experiments [3]. 

The next step is to study the extent to which the obtained feedback latency reduction  improves 

the efficiency of operant conditioning within the NFB paradigm. 
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ABSTRACT: Rapid serial visual presentation can be a useful reading technique for text 

presented on small screens. Readability is an estimate for the ease with which a reader can 

understand a written meaningful text. We investigated whether a passive Brain-Computer 

Interface (pBCI) can be used to distinguish between texts of distinct levels of readability 

presented at different presentation speeds. A predictive model was trained on EEG data 

derived from a cognitive load paradigm. The model was applied to data collected while 

participants read easy and difficult texts at a self-adjusted and an increased speed level. 

Results suggest that predictions by the model could be used for categorization and adaptation 

of text passages. Robustness and potential for the use in neuroadaptive reading applications 

should be further investigated. 

 

INTRODUCTION 

 

Recently developed speed reading applications employ rapid serial visual presentation 

(RSVP) [1] for text presentation on small screen devices. Words are presented at a fixed 

screen position and reading speed is manually adjusted by the user. Among other factors the 

optimal presentation speed depends on the reader’s abilities and features of the text. 

Readability is a measure which estimates the ease with which a reader can understand a 

written meaningful text. In this study we investigated whether a passive Brain-Computer 

Interface (pBCI) [2] can be used to distinguish between texts of distinct levels of readability 

presented at different presentation speeds. 

 

MATERALS AND METHODS 

 

EEG data was collected while participants completed a cognitive load paradigm [3] inducing 

levels of low or high cognitive load. A predictive model was trained to distinguish between 

these levels of cognitive load (Table 1). The predictive model was then applied to EEG data 

collected while participants read easy and difficult texts at a self-adjusted speed and at an 

increased speed level. Predictions made for all words contained in the different text categories 

(difficulty x presentation speed) were analyzed for differences. The relationship between 

average predictive model output and sentence length was also investigated. Moreover, the 

effect of word position within a sentence on predicted values was examined. 
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Table 1: Crossvalidation results of the cognitive load paradigm. Obtained error rates (ER) 

in percent and standard deviations (SD) are reported. 

 participant  ER (SD)  
1 14.1 (3.2) 
2 28.5 (14.7) 
3 14.8 (4.9) 
4 14.5 (2.5) 
5 44.3 (7.8) 
6 18.9 (4.1) 
8 8.3 (1.5) 

  average  20.5 (5.5)  
  
  

RESULTS 

 

Permutation tests performed on predictions of full texts were all highly significant (all ps < 

.0001), except for predictions from easy texts presented fast against predictions from difficult 

texts presented at normal speed (p = .961). Effect sizes were small to medium (M = .266, SD 

= .116). Linear regression analysis was not significant for differences in sentences length. No 

significant regression equation was found when data of all participants was collapsed for 

word positions within a sentence, all ps > .053. On single subject level, four regression 

analyses were significant. Half of the slopes for significant equations were negative while the 

other was positive, ranging between -.003 and .006. 

 

DISCUSSION 

 

The results suggest that predictions made by the cognitive load classifier could be used as an 

estimate for categorization and adaptation of longer text passages. It is not suitable though 

for detection of readability differences on sentence or single word level. 

 

CONCLUSION 

 

The investigated predictive model based on cognitive load potentially could be applied in 

neuroadaptive [4] reading applications to enable individual readability level and reading 

speed adjustment. Its robustness and applicability to other text material should be further 

investigated. 
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ABSTRACT: Clickstream data of student actions within a personalized learning 

environment can include correct steps, errors made, and help-requests. However, processes 

related to robust learning that transfers to novel scenarios, such as reflecting on errors and 

confronting one’s misconceptions, often occur at times where students are thinking and thus, 

during a pause in the log data. To better understand these pauses, we investigated fNIRS 

brain data during pauses resulting in correct and incorrect responses and found significant 

differences. These initial results show promise for combining brain and log data to enable 

neuroadaptive learning technology. 

 

INTRODUCTION 

 
With the increasing ubiquity of online and computer-based learning environments, 

researchers and practitioners now have unprecedented access to data on how students solve 

problems and build knowledge [1]. A large focus in intelligent tutoring systems (ITS) 

research has been to predict learning outcomes using ITS logs [2,3]. Research has shown 

that pauses play an important role in the learning process [4], but, by definition, result in no 

log data. Functional near-infrared spectroscopy  (fNIRS) is an emerging non-invasive 

neuroimaging tool that has been used to measure cognitive state continuously in real-time 

while participants complete computer-based tasks [5,6].We explore its use in disambiguating 

what is occurring during pauses in learning log data. 

 

MATERIALS AND METHODS 

 

We conducted a pilot study in which we collected fNIRS data and log data from five 

participants as they used the ASSISTments platform [7] to solve math problems. fNIRS 

sensors were placed on the participant’s forehead to continually record brain data. Then 

participants proceeded through several sections of tutored problems, where they could 

request help and get feedback. 

We extracted events from the ASSISTments log data, focusing on the pauses in the data. We 

categorized pauses based on three factors: pause length (very short, short, medium, long and 

very long), preceding action and subsequent action. From these pause events, we extracted 

the corresponding fNIRS data. This consisted of the change in oxy-hemoglobin (HbO) and 

deoxy- hemoglobin (HbR) at each of six sensor locations on the forehead. The expected 

hemodynamic response during increased workload is an increase in HbO and a decrease in 

HbR. We were interested in seeing how the changes in HbO and HbR differ, depending on 

the subsequent action. 

Particularly, we wanted to explore whether there was a difference between the correct and 

Session Name: CI-2 
 
Room: R1 
Session: Neuroadaptive Technology: Applications 
Time slot: 10:30 – 12:00 
Day: 2 
 



60 

 

incorrect responses. We focus on the medium-length pause events occurring after a problem 

is loaded (i.e. where the preceding action was load-problem). 

 

RESULTS 

 

Across all participants, there were 69 medium-length pauses after a new problem loaded. 

These pauses ranged from 7.2 to 22.2 seconds. Out of these, 56 resulted in a correct response, 

8 resulted in an incorrect response and 5 resulted in a request for help. For each of the 6 

sensor locations, we looked at the maximum value of HbO for each event. Figure 1 shows 

the mean and standard error of these values across these pauses. Across almost all of the 

channels there was a statistically significant difference between correct and incorrect 

responses. 

 
 

 
Figure 1. Maximum change in oxygenated hemoglobin (HbO) for medium-length pauses (7.2-22.2 seconds) after a 

problem is loaded across 5 participants across 56 correct responses and 8 incorrect responses. Each pair shows the 

response in one of the six sensor locations. For most channels, there was significant difference in HbO, depending on 

whether the participant had a correct or incorrect response. 

 

DISCUSSION AND CONCLUSION 

 
Our work shows preliminary results in using physiological data from functional near infrared 

spectroscopy (fNIRS) brain imaging to enhance learner models during pauses in intelligent 

tutoring system log data. We aim to continue exploring this dataset while we are collecting a 

larger dataset to enable us to build real-time neuroadaptive personal learning environments.  
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ABSTRACT: Hybrid eye-brain-computer interfaces (EBCIs) can employ a slow negative EEG 

wave as a marker for gaze dwells used for interaction. This study examined previously reported 

relation of the marker’s lateralization to the direction of gaze. It turned out that the marker itself 

is not related to the gaze direction and the apparent lateralization is caused by another signal 

superimposed on it. Thus, the marker can be used in BCIs/EBCIs independently of gaze 

direction. 

 

INTRODUCTION 

 

Commands to computers can be sent using gaze. This technology depends on the differentiation 

of intentional vs. spontaneous gaze dwells, because the latter interfere with control but cannot 

be fully suppressed by the user [1]. Differentiation using a passive BCI [2] was proposed in [3]. 

Recently, an EEG marker, a slow negative wave with a posterior localization, was described 

and used to classify intentional vs. spontaneous 500 ms gaze dwells collected in a realistic 

gaming scenario [4].  

We currently analyze the dependency of this marker on factors that may influence it under 

practical application conditions. One of them is gaze direction, as evidence was found that the 

marker’s focus is contralateral to the gaze direction [4]. Here, we studied this relationship in 

detail. 

 

MATERALS AND METHODS 

 

14 healthy participants played a computer game using 500 ms gaze dwells, as in [4]. Each move 

required three dwells: on a switch-on “button”, on a ball, and on a free cell where the ball had 

to be moved (Fig. 1, top). Dwells were deemed intentional (and evoked a visual feedback) if 

followed this order, and spontaneous otherwise. We recorded gaze coordinates together with 

the EEG (19 channels) and the horizontal electrooculogram (hEOG) related to the dwells. To 

characterize the marker, amplitudes over +400..+500 ms relative to dwell start were averaged, 

using +200..+300 ms as baseline. Difference between mean amplitude over the right and left 

posterior channels served as an asymmetry index. ANCOVA and Spearman correlation were 

applied to individual data.  
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RESULTS AND DISCUSSION 

 

EEG topographies confirmed the dependence of the EEG lateralization on gaze direction, but 

the intentional/spontaneous dwell difference showed no such dependence (Fig. 1). EEG 

asymmetry showed small but consistent correlation with gaze direction (median -0.16; negative 

in all but one participant) and with the hEOG (-0.22), no effect of the intention factor, no 

interaction between it and the gaze direction factor, no correlation between the hEOG and gaze 

direction. Time courses did not reveal hEOG artifacts that could influence the EEG, so the 

correlation between hEOG and the EEG asymmetry could be caused by the EEG leakage into 

the hEOG. The asymmetry did not correlate with direction of the next saccade, so it was not 

caused by saccade preparation. POz amplitude depended on intention, with no interaction 

between intention and gaze direction factors. 

The marker can be seen as the stimulus preceding negativity (SPR), an EEG component specific 

to feedback anticipation [5]. The marker’s apparent lateralization [4] contradicted this 

interpretation, as the SPR is not lateralized, but the new results resolve the contradiction. The 

use of SPR in a wider range of passive BCIs supporting interaction with machines can be also 

considered. 

 

CONCLUSION 

 

The EEG marker for the intentional gaze dwells is not affected by horizontal gaze direction. 

Figure 1: A screenshot of the gaze-controlled game board and the EEG amplitude grand average 

(n=14) topographic maps. X coordinate is shown with 0° corresponding to the balls in the 

middle of the screen (gaze straight ahead). +10° and –10° maps are for the dwells on the 

“button”, the other maps represent the dwells on balls. Left and right “button” locations were 

used in different games (only one “button”, left or right, was actually shown along a game; the 
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game order was randomized across the group). Amplitudes were averaged over the +400..+500 

ms interval relative to the dwell start, with baseline +200..+300 ms. Color scale: –5..+5 μV. 

“Button” maps well reproduced the topographies described for the same extreme locations in 

[4], however, the difference maps (the lower row) showed no dependence of the “intention” 

marker on the horizontal gaze direction. (Less data were available for the higher eccentricity 

locations, especially for non-intentional dwells, therefore –7.5° and +7.5° difference maps were 

not reliable.) 
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ABSTRACT: Driving is a common daily activity, where the experience of negative emotions, 

such as stress/anger, can frequently occur. The repeated experience of cardiovascular activation 

associated with negative emotions can be detrimental to long-term health. However, these 

physiological changes can be quantified via wearable technology to enable insight and self-

reflection from the perspective of the individual. A study was conducted to explore the impact 

of data visualization on cardiovascular reactivity and self-regulation in response to driver stress.  

 

INTRODUCTION 

 

High-levels of negative emotions can have adverse implications for health, including 

inflammation, which can impact long-term cardiovascular health (e.g. developing coronary 

heart disease and hypertension) [1]–[3]. However, this cumulative damage can be reduced with 

the use of effective coping strategies, the development of which can be supported using 

wearable technology [4]–[5]. This work presents our mobile platform, which captures data 

during daily commuter driving. This includes psychophysiological data collected from 

wearable devices, including heart rate (HR), heart rate variability (HRV) and pulse transit time 

(PTT). This was enhanced with contextual data collected via a smartphone, including location, 

vehicle speed and photographs of the driving view. These data were then used to create an 

interactive visualization of changes in cardiovascular stress. 

 

MATERIALS AND METHODS 

 

Eight participants took part in the study to collect data during eight commuter journeys to/from 

work (four during the journey to work and four during the journey back to their residence). The 

initial two days of data collection were referred to as a pre-test phase. Data from all four 

journeys during this phase were translated into an interactive visualization of each 

cardiovascular measure (HR, HRV, and PTT) and mapped on the geospatial route. Participants 

were invited to explore their data visualization and a structured interview was performed to 

assess perceptions and insights into the cardiovascular data. After exposure to the interactive 

visualization, data were collected from participants during four subsequent commuter journeys, 

known as the post-test phase. 

 

RESULTS 

 

High journey impedance is characterized by slow vehicle speed due to high traffic density and 

is known to be a source of cardiovascular stress during the driving task [6]. Periods of high 

journey impedance were identified for both pre-test and post-test phases based on vehicle speed 

(i.e. <10mph). The impact of the data visualization on cardiovascular reactivity during high 
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journey impedance was explored using a two (before vs. after visualization) x two (AM drive 

vs. PM drive) repeated measures ANOVA. Results indicate that heart rate significantly declined 

during high journey impedance during the post-test phase compared to the pre-test phase (see 

Fig. 1). The analyses also revealed that HRV significantly increased during the post-test phase, 

which was indicative of reduced inflammation during high traffic impedance (see Fig. 1). The 

strength of the effects found and the statistical significance is F(1,7) = 22.2, p <.01, effect size 

= 0.76. 

 

 
 

Figure 1: Boxplots that illustrate a) mean heart rate and b) mean heart rate variability before 

and after exposing participants to the visualizations. 

 

DISCUSSION AND CONCLUSION 

 

The results provide evidence that exposure to the interactive visualization had a positive effect 

on cardiovascular reactivity to stress during real-world driving. The impact of high journey 

impedance on the cardiovascular system was significantly ameliorated after participants had 

been exposed to the data visualization. It is questionable whether the data visualization itself or 

the introspective exercise was responsible for this effect and further research is required to 

explore this issue. 
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ABSTRACT: The detection of mental workload during driving could provide valuable 

information to car electronics such as the navigation system. Functional Near Infrared 

Spectroscopy (fNIRS) is  a promising candidate for unobtrusive measurement of brain 

activity and has shown convincing results in the discrimination of different levels of 

workload in laboratory settings. In this study, we investigate whether fNIRS can be used to 

robustly discriminate two levels of workload, induced by the n-back task, in a realistic driving 

scenario. 

 

INTRODUCTION 

 

Car navigation and entertainment systems could greatly benefit from information about the 

driver’s current workload to adapt their specific behavior [1]. Monitoring brain activity might 

yield information about the driver’s workload, but the measurement technique would need to 

be unobtrusive to not disturb the driver. Functional Near Infrared Spectroscopy (fNIRS) is 

an optical brain activity measurement technique that does not require electrode gel and can 

be realized using cheap sensors [2] making it a good candidate for consumer products. 

Previous studies highlight the usability of fNIRS in real-life scenarios [3] or propose fNIRS 

as a suitable candidate for brain activity measurement during driving [4]. Different levels of 

workload can be robustly discriminated using fNIRS [5] in laboratory environments, but 

realistic scenarios place very different demands on the measurement technique. In this study, 

we investigate whether fNIRS can be used to discriminate between high and low workload 

during driving. 

 

MATERIALS AND METHODS 

 

Six male participants (mean age of 19.8 years) performed the lane change task (LCT, [6]) in 

a realistic driving simulator (see Figure 1). To induce different levels of workload, 

participants also had to perform an auditory n-back task (10 trials each of 1-back and 3-back). 

During the experiment, 8 channels of hemodynamic activity in the prefrontal cortex were 

recorded using fNIRS (Oxymon Mark III, Artinis). For this purpose, 4 receiver and 4 

transmitter optodes were placed on the forehead (see Figure 1). For comparison, driving 

statistics in the LCT task were used to attempt discrimination of different workload levels. 

Participant dependent classification between periods of high (n=3) and low (n=1) workload 

was evaluated in a 10-fold cross-validation using a LDA classifier. 
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Figure 1: Participant in the driving simulator with fNIRS transmitters and receivers placed on 

the forehead 

RESULTS 

 

Both levels of workload could be discriminated from a relax state, in which the participants 

were only required to perform the LCT, with good accuracies using the LDA classifier. 

Classification between high (n=3) and low (n=1) workload performed better than chance 

level, also. 

Driving parameters, such as derivation from reference path, could also be used to identify 

periods with secondary task and to discriminate the workload level. However, driving 

parameters were outperformed by fNIRS derived features. 

 

CONCLUSION 

 

Our results show that fNIRS can be used to discriminate workload in a realistic driving 

scenario. fNIRS is therefor a good candidate for neuroadaptive technology out of the lab. 
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ABSTRACT: While the theoretical side of physiological computing has received a lot of 

attention, the practical engineering side is still high unorganized: each new project is usually 

started from scratch, and there is little re-used of code, resources and best practices. This paper 

aims to provide a conceptual framework to encompass the whole field of physiological 

computing in a way that provides designers practical guidelines on how to develop 

physiological computing systems as well as a repository for researchers to share code, data, and 

ideas in a consistent manner. The framework consists of five layers that each deal with a 

particular aspect of physiological computing.  

 

INTRODUCTION 
 

This paper proposes a five layer model for physiological computing to help design future 

physiological computing applications and experiments. The work builds on the idea of the 

biocybernetic loop introduced by Pope [1] and further developed by Fairclough[2], as well as 

on the work of Cowley et. al.[3] who described the physiological signals through indices 

derived from metrics. It tries to encompass different emotional concepts such as the dimensional 

model of emotion vs. the categorical view of basic emotions. Furthermore, it aims to cover all 

the four main categories of physiological computing: classification, prediction, biofeedback, 

entrainment. Furthermore, it discusses the use of machine learning in the development of 

physiological computing applications: when should a (part of the) system be devised “by hand” 

and when a black-box machine learning should be used. 
  

THE MODEL 
 

The five layers are depicted in table 1. At the lowest level, we have the signal layer that is 

concerned with the low-level details of the physiological signals such as EDA, EEG, and ECG. 

The layer discusses details such as sampling rates and sensor locations, for example, which 

EEG sensor locations are suitable for certain purposes. 

The next layer is concerned with metrics calculated from the raw signals, such as the amplitude 

of phasic spikes in EDA or the frequency band powers in EEG. The third layer, the indices layer 

uses the metrics to generate indices of the user‘s psychophysiological state, such as arousal and 

concentration. At this layer the different emotional models and cognitive frameworks are 

considered. 
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Next in the model is the logic layer that is concerned with topics such as signal fusion 

(combining input from several physiological signals) as well as context information, user 

profiling and multimodality in general. The logic of the biocybernetic loop is contained in this 

layer and suitable feedback and adaptation specified. The final layer, the application layer 

discusses the implementation details of the actual system, whether it is classification 

(annotation), prediction, biofeedback or entrainment.  

DISCUSSION 

The final aim is not only to build a conceptual model but also an interactive web repository that 

contains code, data, articles and best practices in an easily navigable format so a user who is 

interested, for example, on arousal, can easily check what signals and metrics can be used for 

arousal detection, as well as what kind of applications have been built on top of arousal and 

what kind of logic have previous been implemented for arousal adaptation, 

 

 

Table 1: Five-Layer Model for Physiological Computing 

Layer Example Areas of Interest Description 

Application Implementation of classification, 

prediction, biofeedback and 

entrainment 

The layer that deals with actual 

implementation details 

Logic Multimodality, Context  

Awareness, feedback 

Combining signal sources as well as the 

logic 

Indices 

 

Metrics 

 

Signals 

Arousal, Concentration, Cognitive 

workload 

SCP, HRV,P300 

 

EDA, ECG, EEG 

Mapping the metrics into some contextual 

framework for emotion and cognition 

Calculation of various metrics and features 

from the underlying signals. 

Details pertaining to the recording of the low 

level physiological signals. 
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ABSTRACT: Human-computer interaction relies on both the human brain and the computer; 

hence, inferring mental state is vital for the computer to be able to take relevant actions. In this 

study, we look into multiple aspects of the error-related brain activity when a BCI makes a 

mistake. 

 

INTRODUCTION 

 

The use of error-related potentials (ErrP), i.e. time-domain and low-frequency brain signals 

mostly within 1 to 10 Hz and over midline EEG channels, has been introduced in a few recent 

studies to improve the performance of brain-computer interfaces [1-8]. We investigated low 

and high frequencies as well as spatial features of the feedback-related brain activity in a cursor-

control motor imagery task. We introduced error-related spectral perturbation (ErrSP) that can 

go hand-in-hand with ErrPs to detect error-related mental states. This work is published in the 

BCI Journal titled as “Improving motor imagery BCI with user response to feedback” [9]. Here 

we review the performance of just the error-related brain activity components. 

 

METHODS 

 

Data were collected from 10 participants with a 64-channel EEG system in a motor imagery 

task to control a cursor moving one step/second towards a target on the monitor. Participants 

were instructed to perform right/left hand imagery to move the cursor to the right/left. Even 

though the participants were led to believe that they were in control of the cursor, the cursor 

movements were pre-determined and kept the same for all participants. Data were 

downsampled, filtered and presumed non-brain sources including eye and muscle artifacts were 

removed using independent component analysis (ICA). Next, data were band-pass filtered in 

multiple frequency bands to cover low and high theta, mu and beta bands while overlapping to 

compensate for individual differences. Classification was done in the 150 to 950 ms time 

interval after each cursor movement to determine if the user perceived a cursor movement good 

(towards the target) or bad (moving away from the target). Common spatial patterns (CSP) [10] 

were applied in each frequency band and features were extracted as the log of the power of 

filtered data with the top 3 CSP filters for each class. The ErrSP classifier was implemented as 

a linear-discriminant analysis (LDA) in each frequency band and the above chance-level LDA 

scores were combined with logistic regression. As for ErrP, the average of the signal in 50 ms 

non-overlapping windows from 150 to 950 ms on centerline channels were selected as features 

and an LDA classifier was trained. The number of trials in good and bad classes was balanced 

in all cases and results are reported on 10-fold cross-validation.  
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RESULTS 

 

In Table 1, the first and second rows show the performance of ErrP and ErrSP classifiers 

separately. The last row shows the results of a classifier that combines the information from 

both ErrP and ErrSP with logistic regression. Paired t-tests reveal significant improvements of 

the combined classifier from the ErrP and ErrSP classifiers. Significance levels of 0.05 and 0.01 

corrected for the number of comparisons, are shown with underline and bold fonts respectively.  

 

Table 1: Classification results.  

Participant One Two Three Four Five  Six Seven Eight Nine Ten 

ErrP 0.73  0.73  0.60  0.78  0.66  0.69  0.72 0.72 0.75  0.70  

ErrSP 0.76  0.73  0.54 0.74  0.65  0.71 0.75  0.67  0.76  0.70  

ErrP+ErrSP 0.81 0.77 0.59  0.81 0.71 0.75 0.79  0.75  0.81 0.76  

 

DISCUSSION 

 

We investigated new features to identify feedback-related mental states when a BCI makes a 

mistake. We introduced ErrSPs and showed that in the majority of participants, a combined 

ErrSP and ErrP classifier performs significantly better in detecting the error-related brain 

activity than each classifier does separately, implying the presence of somewhat independent 

information.  
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ABSTRACT: This study tests the possibility of using collaborative brain-computer interfaces 

(cBCIs) trained with EEG data collected during a decision task to enhance group performance 

in similar tasks. 

 

INTRODUCTION 

 

Collaborative brain-computer interfaces (cBCIs) have recently been used to enhance human 

performance in decision making [1-3]. For instance, [2,3] estimated the confidence of each user 

in each decision from a combination of neural common spatial patterns (CSP) features and 

response times (RTs), and used this estimate to weigh individual responses and obtain superior 

group decisions. In this abstract, we explore the possibility of using a cBCI trained with data 

gathered in a decision task to estimate the decision confidence of participants doing a different 

visual search task. 

 

METHODS 

 

Ten participants took part in two visual search experiments in counterbalanced order. In Exp. 

1, participants had to say if a vertical red bar was present in a display with 40 bars shown for 

250 ms (Fig. 1(left)) [2], while Exp. 2 involved more realistic scenes shown for 250 ms with 

many penguins and observers had to say if a polar bear was present (Fig. 1(right)) [3]. Decision 

confidence was estimated by least angle regression (LAR) using four EEG CSPs (extracted 

from stimulus- and response-locked epochs lasting 1.5 s and recorded from 64 channels) and 

RTs. Data from Exp. 1 were used to compute the CSP matrices and to train LAR of each 

participant, while data from Exp. 2 were used to evaluate the performance of groups of 

increasing sizes formed off-line [2], and vice versa. 

 

RESULTS 

 

Fig. 1 shows the mean error rates of groups of increasing sizes making decisions using (a) the 

majority rule, (b) a cBCI trained and tested on data from the same experiment (using 10-fold 

cross-validation), and (c) a cBCI trained on data from one experiment and tested on data of the 

other. Results show that the latter cBCI, albeit worse than the former cBCI, is still significantly 

better than majority (Wilcoxon signed-rank test p < 0.05) for all even group sizes in Exp. 1 and 

all group sizes 2–8 in Exp. 2. 
a)  
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Figure 1. Percentage of erroneous decisions made by groups of increasing sizes using standard 

majority (black line), and the proposed cBCIs trained on data from the other (orange line) or 

the same (blue line, used for reference) experiment. Examples of stimuli used are also shown. 

 

 

CONCLUSIONS 

 

We showed that our cBCI improves group performance in a visual search task over majority 

even when trained on data gathered in a different search task. This suggests that a form of 

transfer learning is possible, which may, in the future, lead to marked gains in practicality (e.g., 

training times). 

 

REFERENCES 

 

[1] Wang, Y., Jung, T.-P. (2011). A Collaborative Brain-Computer Interface for Improving 

Human Performance. PLoS ONE 6(5): e20422. 

[2] Valeriani, D., Poli, R., & Cinel, C. (2016). Enhancement of Group Perception via a 

Collaborative Brain-Computer Interface. IEEE Transactions on Biomedical Engineering. 

[3] Valeriani, D., Poli, R., & Cinel, C. (2015). A Collaborative Brain-Computer Interface for 

Improving Group Detection of Visual Targets in Complex Natural Environments. Proceedings 

of the 7th International IEEE EMBS Neural Engineering Conference (NER), 25-28. 

 

ACKNOWLEDGMENTS 

 

This research was supported by the Defence Science and Technology Laboratory and by 

EPSRC as part of the MURI programme (grant EP/P009204/1). 
 



79 

 

  

 

PASSIVE BCI TOOLS FOR MENTAL STATE ESTIMATION IN 

AEROSPACE APPLICATIONS 

 
Raphaëlle N. Roy, Kevin Verdiere, Sébastien Scannella, Frédéric Dehais   

Isae-Supaero, Toulouse, France 

E-mail address: {raphaelle.roy kevin.verdiere sebastien.scannella frederic.dehais}@isae.fr  

 

ABSTRACT: Recent progress in neurotechnology and machine learning has enabled the 

development of biocybernetical systems or passive brain-computer interfaces (pBCIs). 

There is a growing interest for implementing such pBCIs to monitor human performance 

under complex real life situations such as operating and teleoperating aircrafts or UAVs. This 

abstract presents two studies currently under way to illustrate the benefits of passive brain-

computer interfaces for aerospace applications in order to move on towards more efficient 

and safer systems.  

 

RESEARCH 

 

Recent progress in neurotechnology and machine learning has enabled the development of 

biocybernetical systems or passive brain-computer interfaces (pBCIs). These systems derive 

the user’s mental state from neurophysiological measurements in order to dynamically adapt 

human system interactions [1-2]. There is a growing interest for implementing pBCIs to 

monitor human performance under complex real life situations such as operating and 

teleoperating aircrafts or UAVs. In these particular situations, human operators' executive 

functioning is highly solicited when facing a highly dynamic and uncertain environment, 

especially under time pressure. It seems particularly relevant to try and estimate the mental 

state of such operators to integrate this knowledge into the whole system so as to increase 

both operation safety and performance as advocated in [3]. Using portable devices such as 

electroencephalography (EEG) or functional near-infrared spectroscopy (fNIRS) one can 

explore operators’ mental state in ecological settings (e.g. in a motion flight simulator or real 

light aircrafts). For instance, two of our current projects are focused on i. the 

detection/classification of pilots’ inability to perceive auditory alarms (inattentional deafness 

phenomenon) and ii. the monitoring of brain dynamics during manual vs. automated landing 

scenarios. A brief overview of the obtained results is given below: 

 

i. Classification of EEG features that reflect the inattentional deafness 

phenomenon: The EEG data from 8 participants who performed two piloting 

tasks (a level flight with visibility and good weather, and a landing task with no 

visibility, alarms and smoke in the cockpit), along with an oddball task, were 

classified with success for several comparisons. Indeed, using a signal 

processing chain that includes a spatial filtering step targets/distractors’ and 

detected/missed targets’ event-related potentials were classified respectively 

with an accuracy of 82% and 70%. 

ii. Characterization of mental resources engagement in manual vs. automatic flight 

modes: The fNIRS data from 12 participants who performed two types of 

landings (i.e. manual vs. automatic mode) revealed an impact of the flying mode 

on cerebral oxygenation. What’s more, connectivity metrics enabled reaching an 

intra-subject classification accuracy of 80%, a significant improvement on the 

60% obtained using classical oxygenation features. 
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This work is intended to pave the way towards more efficient and safer aerospace systems which 

would integrate the operator’s mental state into the decisional policy of the global system. 
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ABSTRACT: A chronically implanted micro-electrocorticography-based implant was used 

successfully to elicit spectral changes by closed-loop direct cortical stimulation in the 

somatosensory cortex of the sheep. Responses had distinct spatio-temporal distribution, 

dependent on the used stimulation frequency. These distinctive response patterns could be 

exploited in an effective way for future clinical and research applications. 

 

INTRODUCTION 

 

Interaction with the neocortex via electrical stimulation promises new therapeutic options for 

neuropsychiatric disorders. Thus, there is great interest to develop chronically implantable 

medical devices with closed-loop functionality that can be used to identify appropriate 

stimulation paradigms. Previous works investigated evoked responses elicited by single-pulse 

electrical stimulation (SPES), so called cortico-cortical evoked potentials (CCEPs, [1–3]) and 

their associated spectral changes [4]. Here, the goal was to evoke closed-loop stimulation-

dependent spectral changes in brain activity by the delivery of stimulation bursts instead of 

single-pulse stimulation, via a wireless device in a chronic ovine animal model. 

 

MATERIALS AND METHODS 

 

One sheep was chronically implanted with a wireless micro-electrocorticography(µECoG)-

based device. The electrode array (Fig.1a) was placed over the somatosensory cortex. A 

recording and stimulation contact pair was chosen based on CCEPs elicited by SPES and used 

for the closed-loop system. Continuous online analysis of cortical activity recorded at the 

chosen contact was performed in data chunks of 1s. Spectral power in the 60-90 Hz band not 

exceeding a pre-set threshold triggered either beta frequency or gamma frequency stimulation 

bursts in the subsequent data chunk, while only one stimulation frequency was used within one 

experiment. The recorded data underwent stimulation artefact removal and offline analysis. 

Statistics were used to detect significant spectral power changes across experiments (n=10 for 

each stimulation frequency). 
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RESULTS 

 

SPES elicited CCEPs and analysis of the stimulation burst data revealed what we termed 

cortico-cortical spectral responses (CCSRs, Fig.1b), which showed distinct spatio-temporal 

patterns depending on analysed frequency band and stimulation frequency. Spatial extents of 

CCSRs for the different combinations of frequency band/stimulation frequency were, in 

descending order: beta/beta, beta/gamma, gamma/beta and gamma/gamma. Independent of 

stimulation frequency, more focalized CCSRs were observed in the higher frequency bands. 

 

 

Figure 1: a) Schematic of µECoG electrode array layout. White dots within the contacts depict 

the recording (contact at which the data for online analysis was obtained) and stimulation 

contact (contact where stimulation bursts where triggered) that served as closed-loop anchor 

points.  

b) Mapping of CCSRs. The square corresponds to the 16 recording contact shown in a). 

Illustrated is an example of CCSRs in the beta band elicited by stimulation with gamma 

frequency bursts. Blue colors: increase in spectral power following gamma burst stimulation. 

Grey colors: decreases. Black dots depict significant CCSRs (sign test across experiments, 

p<0.05) 

DISCUSSION 

 

This work describes the use of a wireless implant with closed-loop stimulation ability to elicit 

CCSRs via μECoG direct cortical stimulation. The distinct spatio-temporal distributions of 

CCSRs might be taken into account, depending on which spatial-temporal accuracy is desired 

for the application. More studies with more fine-grained increments of stimulation-frequency 

remain to be conducted to achieve a better understanding of closed-loop stimulation-induced 

response patterns. 
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CONCLUSION 

CCSRs might provide a novel measure to unravel functional connectivity and to guide closed-

loop modulation in the cortex. This approach might be helpful for the exploration of the μECoG 

stimulation parameter space and thus in addressing fundamental physiologic and technical 

questions that are crucial for the successful clinical application of closed-loop implants in 

assistive brain-machine interfacing, epilepsy therapies or the treatment of neuropsychiatric 

disorders. 
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ABSTRACT: Classification of various emotions has been very interesting in neuroscience as 

well as engineering aspects. However, it is not easy to resolve this multi-class classification in 

a quite accurate manner. Among emerging machine-learning techniques, we introduced the 

convolutional neural network (CNN) technique to improving the multi-class classification 

performance of emotions. We instructed subjects to watch emotion-evoking video clips and 

collected to EEG on the frontal area using BIOS-mini devices. We trained CNN and used it as 

a classifier of four kinds of emotions. As a preliminary result, we achieved a classification rate 

of 67% in this four-class emotion classification problem. With more tuning parameters, our 

approach may increase emotion-classifier performance. 

 

INTRODUCTION 

 

Understanding or detecting one’s emotions is one of the key activities in social interaction [1]. 

Binary emotion classification based on EEG has been studied in many groups [2, 3, 5]. Multi-

class classification is necessary because people felt various emotions in real situations. Due to 

this reasoning, we conducted EEG experiments while watching different genres of video clips 

and tried to classify multi-class emotional states with convolutional neural networks (CNN). 

 

MATERIALS AND METHODS 

 

The experiment was performed that eight people in a group watch four kinds of emotional video 

clips (evoking happiness, horror, sadness, and boredom); each clip’s duration is 20 minutes. 

We collected EEG data from 10 groups (total 80) using BioBrain EEG system, which consists 

of eight channels with 1 kHz sampling rate. We use five EEG (AF7, FP1, FPz, FP2, and AF8), 

one for each EOG, EMG, and ECG channels. Every frame in a signal recorded from same video 

clips was labeled with same emotions. Signal was cut in every second without overlap. Then, 

eight bins of band powers (1-50Hz) in every frame were calculated and used as input of CNN 

without noisy channels. CNN consists of three 2d-convolution layers as shown in Fig. 1. We 

used more filters in the deeper layers. Rectified linear unit (ReLU) function was used as a 

kernel. Classification accuracy was calculated by averaging data from 10-fold cross validation. 
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Figure 1: CNN structure proposed for 4-class emotion classifications. 

 

RESULTS 

 

Tab. 1 showed four-class classification results using CNN. Averaged classification accuracy 

was 67%. We noted that happiness and horror were relatively higher in accuracy than the others; 

more often boredom and sadness emotions were misclassified as horror. 

 

Table 1: Classification rate (%) 

Classified 

Input 

Happiness 

(Comedy) 

Boredom Horror Sadness 

Happiness(Comedy) 71 6 17 5 

Boredom 6 59 29 6 

Horror 8 10 76 7 

Sadness 7 12 20 61 

 

DISCUSSION 

 

In this preliminary study, the average of classification accuracy for the four genres was 67% 

(25% is random chance level in 4-class classification), which is insufficient result compared 

with another study [4]. However, our study yielded similar accuracy with fewer channels and 

showed the possibility of classifying the emotional status using the neural network technique. 

With more tuning parameters of the neural network and considering better features, our 

approach may be promising. 

 

CONCLUSION 

 

In our preliminary study, we achieved that 67% of averaged classification accuracy for four 

kinds of emotional states using CNN with EEG data. 
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ABSTRACT: To build robust neurophysiological monitoring systems and brain computer 

interfaces (BCIs) it is critical to understand how neural responses change under realistic task 

demands and how signal quality is affected by real-world artefacts. We applied machine 

learning techniques to EEG data collected while subjects walked on a treadmill for an hour 

carrying 40% of their body weight while performing a visual oddball task. Previous work has 

shown differences in cognitive neural activity associated with variations in physical demands 

at the electrode level [1] and using cortical source localization techniques [2]. Here our goal is 

to determine if machine learning can classify single-trial neural responses. This work is an 

important step towards fielding brain-computer interface (BCI) technologies in real world 

environments. 

 

INTRODUCTION 

 

In recent years, machine learning techniques have been successfully applied to 

electroencephalography (EEG) data to classify neural responses associated with visual target 

detection [e.g., 3,4].  Although significant progress has been made to improve these algorithms 

for use on noisy data by enhancing the signal-to-noise ratio with novel transforms [5] and 

accounting for temporal variability through sliding windows [6], the application of these 

algorithms to data obtained during more complex, military-relevant scenarios remains unclear.  

 

MATERALS AND METHODS 

 

Subjects (n=18) performed a two-stimulus visual oddball task under walking and seated 

conditions. Subjects performed both conditions while wearing an unloaded rucksack, then again 

while wearing a rucksack loaded with 40% body weight. While walking with the loaded 

rucksack for an hour, subjects identified oddball images using a button-press. We used 

hierarchical discriminant component analysis (HDCA) [7], common spatial patterns (CSP) [8], 

and xDAWN [9] to classify the neural response to each image as either a response to an oddball 

or standard image. We performed 5-fold cross validation within each condition. Using balanced 

accuracy, we compared the performance of each BCI classification method across conditions 

to determine if walking, load, time-on-task, or any interaction of these conditions had an effect 

on classification accuracy. 

 

RESULTS 

 

We found that classifier accuracy was lower for walking data than for seated data for all 

classification methods (p<0.01). Classification accuracy when using loaded data was lower than 

when using unloaded data for HDCA and xDAWN (p<0.01), but not CSP.  Within the 
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interaction of loading and walking, we found that for all classification methods, the loaded 

walking condition had lower classification accuracy than the unloaded walking condition 

(p<0.01), but there was no significant difference in performance between loaded and unloaded 

seated conditions (Figure 1). 

 

 

Figure 1: Group mean balanced accuracy values for HDCA with standard error bars.  Brackets 

indicate significant differences (p<0.01). Other classification methods (CSP and xDAWN) 

showed a similar trend in performance. 

 

DISCUSSION AND CONCLUSION 

 

We were able to show that single-trial detection of the P300 response is feasible for data 

collected while the subject performs a realistic, demanding physical task. The diminished 

performance in walking relative to seated conditions may be due in part to the observed 

decreased amplitude of the P300 response. In addition to this, the increased severity in motion 

artefact in the loaded and unloaded walking conditions may also lead to a decrease in 

classification accuracy due to a reduced ability to resolve the neural response in the presence 

of noise. In order to create fieldable BCI systems, overcoming signal changes due to increased 

noise and changing neural responses is necessary. Ongoing work will investigate the extent to 

which each of these factors affects BCI accuracy and methods to overcome these factors. 
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ABSTRACT: The importance of spatial independence in Brain-Computer Interface (BCI) 

spellers is significantly underestimated. To this end, we have designed a spatially 

independent speller using subsets of letters as stimuli, allowing us to cue multiple letters in 

parallel with the use of common segments, without requiring constant foveation [1]. A final 

letter cue to confirm the selection could yield a significant increase in information transfer 

rate (ITR); we investigate if responses to whole letters are affected by being interspersed with 

segments. 

 

INTRODUCTION 

 

An underestimated cost associated with the diverse family of grid spellers is the matter of 

spatial independence [2]. Individuals suffering from neurodegenerative illnesses like ALS 

have reduced capacity to direct overt attention, and many BCIs are dependent on eye gaze 

[3]. Our system uses letter segments to cue letters in parallel, iteratively identifying the 

desired letter [1]. We have recently experimented with using presentation of whole letters 

as additional probes. 

 

MATERIAL AND METHODS 

 

For our stimuli, we projected the 26 letters of the English alphabet onto an altered version of 

the ‘scoreboard’ font (Fig. 1). To investigate the context-specificity of letter responses, we 

investigated the responses of five subjects to a) solo-letter blocks, b) solo-segment blocks and 

c) mixed-letter (both) blocks. For letter-blocks, nontargets were drawn uniformly from the 

other 25 letters with a randomly selected probability of 50% or 80%. For mixed-letter blocks, 

each given stimulation in mixed-blocks had a 20% (S1) or 30% chance of being a whole 

letter, of which 50% were the target, and the rest were a random letter. All blocks consist of 

45 stimulations, with a duration of 380ms, and an inter-stimulus interval of 150ms, following 

the assignment of a target letter. I, V, Y and X were disallowed as targets. Pseudo-online 

training implemented LDA on [target] and [nontarget] letter class means, specified using 5, 

100ms windows ranging from 300ms to 800ms. 
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STrain_STest MTrain_MTest ATrain_ATest Strain_MTest MTrain_STest 
 

S1 28.84% 35.71% 27.90% 31.75% 42.32% 

S2 45.43% 34.43% 37.05% 40.13% 34.94% 

S3 18.71% 24.78% 19.53% 26.56% 30.65% 

S4 21.90% 18.71% 20.68% 35.20% 36.98% 

S5 24.35% 26.86% 28.00% 40.86% 38.21% 

AVG 27.85% 28.09% 26.63% 34.90% 36.62% 

Table 1: Misclassification rates, per subject, for pseudo-online train/test set divisions. (S) Solo: independent 

letter blocks. (M) Mix: blocks with letters and segments as stimuli. (A) All: All stimulations included. Classes 

were balanced via random removal of trials from larger class. 10-fold cross-validation was used when 

training and test sets matched. 

 

 
 

Figure 1: Sample letters, along with all 10 segments (2 repeats) present in the segment library. 

Additionally, a grid showing the overlap of the respective segments, and their numbers. 

 

RESULTS 

 

Subject 1 shows improved performance on mixed-letter presentations versus solo-letter 

presentations. Conversely, S2 shows a slight decrease in misclassification percentage 

when the classifier is trained on mixed-letter data and tested on solo-letter data. These two 

subjects exhibit the worst performance. All other subjects pay a considerable cost when 

trying to train and test across block-conditions. 

 

DISCUSSION 

 

Pseudo-online classification of the collected data suggests that it would be advisable to train 

letter- specific classifiers using interleaved segment/letter blocks with letter frequencies 

similar to online.  
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ABSTRACT: Traditionally neuroscience has focused on improving our understanding of the 

functional underpinnings of neural activity, leading scientists to seek ideal data resolution 

because the outcomes and future direction of their work is often uncertain.  However, in the 

pursuit of moving into real-world, non-ideal scnarios where power and space are limited, we 

must develop ways to pragmatically evaluate the efficacy of our data acquisition (DAQ) 

methods and understand the functional minimum performance for the target application. Here 

we espouse the notion of using BCI classification accuracy as a metric for DAQ performance 

evaluation, and demostrate by applying it to a novel self-adapting system designed for 

performance at ultra-low power. 

 

INTRODUCTION 

 

In recent years, the cost and fidelity of EEG has improved dramatically [1] while becoming 

more fieldable [2]. A continual problem is power, limiting long-term monitoring to about a half 

day, especially in high-density systems, creating a challenge for daily monitoring [3], [4]. This 

is due in large part to the inherently low SNR which requires high-fidelity ADC components. 

While some lower-power, and subsequently lower-fidelity approaches have been proposed [5], 

[6], an ongoing challenge is in how to quantify the usefulness of these approaches and validate 

DAQ performance. In this work, we propose use of an online adaptive analog front-end to 

minimize power consumption and demonstrate its efficacy using a battery of BCI paradigms, 

using classification accuracy as a figure of merit. 

 

MATERALS AND METHODS 

 

Sample system: An adaptive analog front-end is proposed wherein data from a low bit-depth 

ADC is evaluated on a sample-by-sample basis by an onboard high-efficiency DSP. The DSP 

then manipulates a voltage offset controller (VOC) and variable gain controller (VGA) to adjust 

the offset and gain of analog signals coming into the ADC. This reduces the dynamic range of 

the signal arriving at the ADC, which reduces the bit-depth requirement of the ADC while 

maintaining signal resolution.  

 

RESULTS 

 

Pre-recorded raw, unreferenced data, acquired using a 24-bit high-fi commercial system from 

multiple BCI paradigms were fed through a realistic simulation of the above system, yielding 

re-digitized data with varied degrees of fidelity loss, depending on DAQ factors such as ADC 

bit depth, VOC resolution and update rate. Data from each paradigm and DAQ factor were then 
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classified using conventional approaches (e.g. HDCA, [7] and compared against a randomized 

baseline to ascertain performance. Results to date (based on RSVP) for this system suggest that 

accuracy is not statistically impacted  until ADC resolution drops below 24µV, and that VOC 

rate had a relatively small impact. Ongoing work focuses on performance using other 

paradigms, such as SSVEP and motor movement tasks. 

 

CONCLUSIONS 

 

Quantifying the performance of novel EEG DAQ approaches is difficult, particularly due to the 

lack of a ground-truth for baseline comparison. We propose that use of application-specific 

metrics, such as classification performance, can serve as one surrogate approach. In the case of 

low-power DAQ design, we have demonstrated that acceptable performance can be achieved 

even with low-fidelity components and resulting data suggests that BCI implementations may 

not require high-resolution data as is often preferred.  
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ABSTRACT: A common challenge with the development of adaptive systems is the choosing 

and optimizing of the thresholds in the values of the neurophysiological signal at which the 

system triggers an adaptation. This paper presents a new approach for continuous calibration 

through dynamic threshold selection. Participants' game experience is compared between a no 

adaptation control condition, a condition with an EEG cognitive load adaptive system and a 

condition with the EEG with a dynamic thresholding system. The thresholding is adjusted with 

a second neurophysiological signal, emotional valence. 

 

INTRODUCTION 

 

Biocybernetic adaptive systems or passive brain-computer interfaces (BCI) are closed loop 

systems that can respond to the user's neurophysiological state to modify the system's 

parameters to reach a user's desirable state. While multiple research groups have been building 

functional biocybernetic adaptive systems[1–5], many technical challenges remain to be 

addressed [6–8]. One such challenge is the choice of the thresholds that the system uses to 

decide when to trigger an adaptation. Previous works have used validation studies to define a 

given population's optimal threshold [2]. Developers who desire a more precise adaptation will 

often use personalization tasks to individually tailor thresholds just before the use of the system 

[9].  Both these approaches require time and resources. To overcome these challenges, we look 

to hybrid BCIs (hBCI) which combine two neurophysiological signals and triangulate them to 

improve system accuracy [10]. We also look to other BCI models that employ continuous 

calibration [11, 12]. In this paper, we propose a new approach for dynamic threshold selection 

that calibrates the system based on a secondary neurophysiological signal. 

 

MATERALS AND METHODS 

 

The biocybernetic loop adapts to one physiologically inferred metric, in this case, cognitive 

load, using electroencephalography (EEG), while the thresholds are continuously adjusted 

using a reinforcement learning model [13] based on a second metric, in this case, emotional 

valence, inferred using facial expression analysis (FaceReader, Noldus, Wageningen, 

Netherlands). The experimental design is based upon Ewing et al. [2]. Each participant plays 

10 minutes of Tetris under three experimental conditions, a no adaptation control condition, a 

cognitive load only condition and our proposed biocybernetic loop using dynamic threshold 

selection condition. Player experience is measured with the Game Experience Questionnaire 

(GEQ) [14], the score at the end of the game and the number of times the player lost (ie the 

screen filled with pieces and the game started over).  
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In this first use case, the auto adaptive system manages the game difficulty as in the Dynamic 

Difficulty Adjustment framework [15]. More precisely, the actions that the reinforcement 

learning model chooses are the system’s adaptations (speed +1, speed -1, and speed + 0).  The 

problem space in which the model evolves and tries to find an optimal path is composed of the 

two dimensions of cognitive load and current speed of the game. Each action undertaken by the 

model is rewarded by the local changes in the subject’s valence following the adaptation. Doing 

so, the system should converge towards an optimal state of difficulty vs cognitive load that is 

specific to each subject and that may change over time. In this approach, the adaption thresholds 

are replaced by the transitioning policy optimised over time that the system uses to decide which 

action to take.  

 

DISCUSSION AND CONCLUSION 

 

Experimental testing is currently underway to validate the improvements provided by this 

system to the current model of biocybernetic adaptation. It was built with the intention that it 

should be generic and easily reusable and signals with other variables such as arousal measured 

from electrodermal activity and any other frequency band from EEG data. As it is, it will be 

tested next with a serious game to measure its effect on learning outcomes.  

This hBCI introduces a new way to combine multiple neurophysiological signals. Until now, 

most hBCI combined neurophysiological signals by using both streams as conditions to be met 

to trigger an adaptation. This system however, uses the second signal to modify the parameters 

of the system that uses the first signal. We hope this will inspire others to triangulate multiple 

neurophysiological signals in this manner to continuously calibrate their BCI. 

 

REFERENCES 

 

[1] Berka, C., Levendowski, D. J., Cvetinovic, M. M., Petrovic, M. M., Davis, G., Lumicao, 

M. N., … Olmstead, R. (2004). Real-Time Analysis of EEG Indexes of Alertness, 

Cognition, and Memory Acquired With a Wireless EEG Headset. International Journal 

of Human-Computer Interaction, 17(2), 151–170. doi:10.1207/s15327590ijhc1702_3 

[2] Ewing, K. C., Fairclough, S. H., & Gilleade, K. (2016). Evaluation of an Adaptive Game 

that Uses EEG Measures Validated during the Design Process as Inputs to a 

Biocybernetic Loop. Frontiers in human neuroscience, 10(May), 1–13. 

doi:10.3389/fnhum.2016.00223 

[3] Lin, C. T., Ko, L. W., Chung, I. F., Huang, T. Y., Chen, Y. C., Jung, T. P., & Liang, S. 

F. (2006). Adaptive EEG-based alertness estimation system by using ICA-based fuzzy 

neural networks. IEEE Transactions on Circuits and Systems I: Regular Papers, 53(11), 

2469–2476. doi:10.1109/TCSI.2006.884408 

[4] Prinzel, L. J., Freeman, F. G., Scerbo, M. W., Mikulka, P. J., & Pope, A. T. (2000). A 

Closed-Loop System for Examining Psychophysiological Measures for Adaptive Task 

Allocation. International Journal of Aviation Psychology, 10(4), 393–410. 

doi:10.1207/S15327108IJAP1004 

[5] Scerbo, M. W., Freeman, F. G., & Mikulka, P. J. (2003). A brain-based system for 

adaptive automation. Theoretical Issues in Ergonomics Science, 4(1), 200–219. 

doi:10.1080/1463922021000020891 

[6] Brouwer, A. M., Zander, T. O., van Erp, J. B. F., Korteling, J. E., & Bronkhorst, A. W. 

(2015). Using neurophysiological signals that reflect cognitive or affective state: Six 

recommendations to avoid common pitfalls. Frontiers in Neuroscience, 9(APR), 1–11. 

doi:10.3389/fnins.2015.00136 

[7] Allanson, J., & Fairclough, S. H. (2004). A research agenda for physiological computing. 

Interacting with Computers, 16(5), 857–878. doi:10.1016/j.intcom.2004.08.001 



99 

 

[8] Fairclough, S. (2011). Physiological computing: interfacing with the human nervous 

system. Sensing Emotions. doi:10.1007/978-90-481-3258-4 

[9] Johnson, R. R., Popovic, D. P., Olmstead, R. E., Stikic, M., Levendowski, D. J., & Berka, 

C. (2011). Drowsiness/alertness algorithm development and validation using 

synchronized EEG and cognitive performance to individualize a generalized model. 

Biological psychology, 87(2), 241–50. doi:10.1016/j.biopsycho.2011.03.003 

[10] Banville, H., & Falk, T. H. (2016). Recent advances and open challenges in hybrid brain-

computer interfacing: a technological review of non-invasive human research. Brain-

Computer Interfaces, 2621(February), 1–38. doi:10.1080/2326263X.2015.1134958 

[11] Verhoeven, T., Hübner, D., & Tangermann, M. (2017). Improving zero-training brain-

computer interfaces by mixing model estimators. Journal of neural engineering, 14(3). 

Retrieved from http://iopscience.iop.org/article/10.1088/1741-2552/aa6639/meta 

[12] Bos, D. P. (2014). Improving Usability Through Post-Processing. 

[13] Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction (Vol. 1). 

Cambridge: MIT Press. 

[14] IJsselsteijn, W. A., Kort, Y. De, & Poels, K. (2013). The game experience questionnaire: 

Development of a self-report measure to assess the psychological impact of digital 

games. Retrieved from http://www.citeulike.org/group/17755/article/12141174 

[15] Hunicke, R., & Chapman, V. (2004). AI for dynamic difficulty adjustment in games. 

Challenges in Game Artificial Intelligence AAAI …, 91–96. 

doi:10.1145/1178477.1178573 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



100 

 

 

 

 

MoBI 
 

Session EII 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



101 

 

 

 

 

MOBILE BRAIN / BODY IMAGING (MoBI) OF PHYSICAL 

INTERACTION WITH DYNAMICALLY MOVING OBJECTS 
 

Evelyn Jungnickel, Klaus Gramann 

Berlin Institute of Technology, Germany 

E-mail address: {evelyn.jungnickel, klaus.gramann}@tu-berlin.de  

ABSTRACT: The non-invasive recording and analysis of human brain activity during active 

movements in natural working conditions is a central challenge in Neuroergonomics research 

and a step towards applying neuroadaptive technology in the context of human-environment 

interaction. 

To investigate the brain dynamics accompanying rapid volatile movements we used a visual 

oddball paradigm requiring variably interactive responses due to a color change of an object 

moving on a projection screen. Using a mobile brain/body imaging (MoBI) approach 

including independent component analysis (ICA) with subsequent backprojection of cluster 

activity allowed for systematically describing and quantifying the contribution of brain 

processes and non-brain sources as muscle activity and eye movements to the sensor signal. 

Using this approach allowed to analyze visual event-related potentials even for rapid volatile 

arm movements. 

 

INTRODUCTION 

 

The embodied cognition paradigm claims that the body’s interactions with the world are an 

essential root of cognitive processes [1]. Thus we should use naturalistic conditions to study 

human brain dynamics accompanying natural cognition [2]. Here we investigated the 

feasibility of MoBI [3] and ICA during physical interaction with a dynamic system. It was 

examined whether it is possible to record and analyze an event-related P3 component during 

rapid pointing movements that include strong eye movement and neck muscle activities. 

 

MATERALS AND METHODS 

 

We recorded high density EEG synchronized with motion tracking of participants physically 

interacting with a dynamically changing system. Changes in the system were simulated using 

a three- stimulus visual oddball paradigm [4] with participants reacting either by simple 

button presses, by pointing to a fixed location or by pointing at the moving stimulus. ICA 

guided separation of brain processes from activity generated by muscles and eye movement 

allowed for a quantification of how much specific ICs contributed to the event-related surface 

signal depending on the response type. 

 

RESULTS 

 

MoBI proved feasible for analyzing event-related EEG dynamics of participants performing 

rapid pointing movements in a realistic 3-D environment. Parietal clusters and brain 

processes located in or near the ACC contributed the most to the P3 in line with previous 

findings [5,6,7]. 
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DISCUSSION 

 

An increase of artifact contaminated trials and channels as well as higher residual variances 

compared to EEG studies with stationary participants indicate potential constraints of the 

MoBI approach for investigating natural movements. Moreover brain processes repeatedly 

correlated with non-brain related activity might not always be successfully separated with 

ICA. 

 

CONCLUSION 

 

When studying natural cognition, analyzing ICs contributing to the surface signal should be 

preferred over standard sensor based analyses approaches. For highly artefact afflicted data 

other source separation algorithms than ICA which consider time and location information 

should be examined. 
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ABSTRACT: Electroencephalography (EEG) and Electromyography (EMG) synchronization 

are of paramount importance in Mobile Brain Imaging (Mobi) experiments. Here we tested a 

method to estimate the synchronization jitter when online data streams are not available, e.g. in 

most clinical environments. We demonstrated that it is possible to obtain satisfactory 

synchronization results (Jitter<5ms) even without the availability of a TTL trigger port. 

 

INTRODUCTION 

 

EEG and EMG are the techniques of choice in the rapidly emerging Mobi research field, 

especially in walking-related tasks, mainly due to their high time resolution, noninvasiveness, 

portability and overall ease of use [1, 2]. Other techniques such as NIRS or fMRI do not have 

the necessary high time resolution and portability required to detect intra-stride changes in brain 

activity during ambulation [3, 4]. However there are challenges posed by the presence of 

artifacts (e.g, movement artifacts, cable movements, non-stationary line noise, etc.) and the 

difficulty of synchronization of different data streams. Here we tested a method to synchronize 

EEG and EMG and to estimate the jitter in light of a Mobi experiment reproducing the 

constraints usually imposed by the clinical environment (e.g. unavailability of data streams or 

Application Programming Interfaces - APIs). 

 

MATERALS AND METHODS 

 

The experiment was carried out at the Villa Beretta - Ospedale Valduce, LC, Italy with a EEG 

Neuroscan SynAmps2 and the BTS Free EMG 1000. Neither APIs nor TTL input 

synchronization port were available for the EMG. We used an ARDUINO, connected via a 

serial port to a PC to deliver a 0.5Hz spike train (10 minutes) simultaneously to both platforms, 

respectively via a TTL port (EEG) or directly to the electrodes (EMG) as shown in 

Fig. 1. Data were cut, shifted and linearly interpolated so that the first and last spike coincided. 

The Jitter was estimated as the 95th percentile of the distribution of the displacements between 

middle spikes (Fig. 2). 
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Figure 1: EEG EMG synchronization set-up 

 

 

 
Figure 2: EEG (top) and EMG (bottom) synchronization spikes. EMG data are translated and 

interpolated so that the first and last spike coincide. On the lower right a one analog EMG spike 

is magnified. 
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RESULTS 

 

Results demonstrated a 5ms Jitter within a 10 minute-recording. Spike displacement was 

distributed in a Gaussian fashion. Particular care however had to be taken in determining the 

actual timing of the analog spike, as hardware filters may delay or spread the peak up to 100ms 

(Fig. 2). 

 

DISCUSSION 

Artifacts and synchronization issues restrict acess to the Mobi framework to laboratories with 

state of- the art equipment and high level of data analysis expertise. Consequently its usability 

e.g. in clinical settings is reduced [5]. The Lab Streaming Layer platform [6] enables state of 

the art on-the fly multiple streams synchronization. Often however this is not an option due to 

unavailability of APIs, reliable networks or technical expertise. This is often the case with 

hospitals due to device certification requirements. Spike delivery to electrodes should be 

considered as a fallback solution when a TTL synchronization port is not available. In fact 

hardware filters might interfere with spike recording (See Fig.2, lower right). Jitter was the 

result of hardware filters, threshold selection, sampling rate variability etc. In conclusion we 

showed here that it is possible to perform offline EEG and EMG synchronization even without 

the availability of API, data streams and a TTL port. The 5ms Jitter demonstrates the Mobi 

framework can be safely exported to clinical settings. 
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ABSTRACT: Nowadays mobile technologies can translate research methodologies to daily-life 

activities away from the lab environment. We created a fully-mobile setup for multi-level 

analyses of walking in the real world and observed behavioural and neurophysiological aspects 

of single- and dual-task locomotion in healthy adults (N=14). Gait kinematics were recorded 

simultaneously along with 64 channel-EEG whilst walking 200m around campus and sensor-

level spectral activity confirmed previous findings using lab-based treadmills and 

circumscribed indoor pathways. In both single- and dual-task conditions, gait variability 

(measured via vertical acceleration intensity) positively correlated with gait speed and spectral 

activity of the left posterior parietal cortex. Results validate the reliability of our setup for real-

world applications and prepare the ground for future investigations of modelling interactions of 

brain activity and cognitive-motor behaviours in health and neurological conditions in hitherto 

untested environments. 

 

INTRODUCTION 

 

Several studies have focused on both healthy and impaired features of gait, such as acceleration 

profiles [9] but, due to hardware limitations, very little work has been done on the underpinning 

neural control of gait [8] [11] [12] [15] [16]. Employing recent developments in mobile 

technologies, studies have demonstrated that (Pre)Frontal Cortex (PFC) and bilateral Posterior 

Parietal Cortex (PPC) are actively involved in monitoring of gait and of dual-task performance 

in the lab [1] [6] [14]. In the present study, we combined mobile neuroimaging and gait 

monitoring during “real-life” experimental-conditions outside the lab with the aim to assess 

mobile EEG reliability and investigate preliminary relationships between activity in specific 

brain regions and ambulatory behaviour. 

 

MATERALS AND METHODS 

 

Healthy subjects (N=14; 26 (± 3) years old; 5 male/ 9 female) walked at their preferred, natural 

speed along a predefined path (200 m in the University of East London garden) naturally (ST) 

or while simultaneously conversing (DT) continuously without external cues. Contact switches 

detected times of heel strikes, while 64 channel EEG was recorded by an EEGoPro amplifier 

(ANT Neuro, Enschede, NL) carried in a backpack by the subject. A Samsung Galaxy S4 mini 
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smartphone was fixed on the subject’s lower back and recorded linear accelerometer data from 

which gait measures, such as velocity (m/s) and acceleration Root Mean Square Ratio (RMSR) 

[13] were extracted (iGAIT [17]). EEG data were synchronized to heel strikes, pre-processed, 

segmented into epochs (capturing a full stride) and analysed at sensor-level in the time-

frequency domain (EEGLab [7]). Single-epoch spectrogram changes with respect to the 

baseline (i.e. standing still eyes-open resting state prior to walking) were computed via Morlet 

wavelet decomposition and time warped to the heel strikes median (across subjects) using linear 

interpolation. Secondly, the mean Power Spectral Density (PSD) in the Frequency bands of 

Interest (FOI),  (4-7 Hz), α (8-12 Hz) and β (15-30 Hz) was calculated for each epoch (i.e. 

only frequency domain) and then averaged across epochs (ST = 179 (± 28) epochs, DT = 148 

(± 20) epochs). PSD in three Regions of Interest (ROI) (PFC, right/left PPC) was calculated in 

each FOI and in each condition for each subject. Three multiple linear regression models were 

stepwise fitted for each condition with acceleration RMSR in each direction (x3; vertical, 

antero-posterior, medio-lateral) as Dependent Variables (x3; DVs), and velocity and PSD in 

each FOI (x3) and ROI (x3) as Independent Variables (IVs) for each model. 

 

RESULTS 

 

Table 1 reports group average PSD in each ROI and in each FOI for ST and DT conditions: 

paired-samples t-Tests showed significant increase of activity in DT in comparison to ST in  

in PFC and right PPC, as well as in α and β in right PPC only. Figure 1A shows an example of 

single subject time-frequency spectral decomposition from the P3 electrode (as a comparison 

with previous findings [12]). Sustained α and β desynchronization (ERD) through the whole 

stride duration and modulated  oscillations are visible at specific points in the stride. Figure 

1B shows the outputs of two regression models successfully fitted (from a total of 6 possible 

models). For the single-task condition, a model was generated (R2 = 0.725, p = 0.001) with 

vertical-RMSR as DV and velocity (B = 0.355, p = 0.001) and left-parietal θ PSD (B = 0.009, 

p = 0.026) as IVs. For the dual-task condition, a model was generated (R2 = 0.727, p = 0.001) 

with vertical-RMSR as DV and velocity (B = 0.029, p = 0.003) and left-parietal α PSD (B = 

0.021, p = 0.020) as IVs. 

 

 
Table 1 – Power Spectral Density (PSD). Average PSD (mean (±std)) across subjects (N = 14) is here reported for each 

region of interest (PFC = (Pre-) Frontal Cortex, PPC = Posterior Parietal Cortex), for each frequency band of interest ( (4-7 

Hz), α (8-12 Hz) and β (15-30 Hz)) in each experimental condition (St = Single-Task walking; DT = Dual-Task walking). 

Reported values are in dB. Paired-samples t-Test (St vs. DT) statistical values and significance p-values are reported in the last 

two columns. 

 

ROIs FOIs ST DT t-value p-value 

 

PFC 
 -3.0 (± 2.4) -2.6 (±2.2) -3.314 0.006 

α -5.3 (± 3.1) -5.0 (±2.9) -0.795 0.441, N.S. 

β -11.1 (± 3.1) -10.6 (±2.8) -2.090 0.057, N.S. 

 

right PPC 
 -1.2 (± 2.1) -0.7 (±2.0) -5.120 0.001 

α -2.9 (± 2.5) -2.2 (±2.7) -2.795 0.015 

β -9.0 (± 3.2) -8.3 (±2.9) -3.577 0.003 

 

left PPC 
 -1.9 (± 2.4) -1.6 (±2.3) -1.902 0.080, N.S. 

α -3.4 (± 3.0) -3.4 (±2.8) 0.066 0.948, N.S. 

β -9.1 (± 3.7) -8.7 (±3.4) -1.346 0.2014, N.S. 
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Figure 1 – Time-frequency spectral power (A) and Multiple Regression models output (B) for each condition (ST = 

single-task, DT = dual-task). (A) Single-subject time-frequency spectral decomposition averaged across epochs in P3 

electrode. Colorbar (dB) represent increase (red) and decrease (blue) of power with respect to the baseline (resting state prior 

to walking). Vertical black lines represent heel strikes (right and left) median across subjects (N = 14). (B) Group-level (N = 

14) multiple linear regression models output (Observed vs. Predicted values). Condition-specific measures of Goodness-of-Fit 

of the models (R2) are reported in the graphs. 

DISCUSSION 

 

Neural correlates of walking during daily-life situations in the real-world are presented [10]: 

first, typical sustained α and β ERD and phasically modulated  oscillations through all the 

stride duration are recorded over the left parietal area in line with previous literature [12]; 

second, a positive relationship exists between vertical RMSR, velocity and left PPC PSD in  

(single-task) and α (dual-task) frequency bands. PPC is thought to act as a sensorimotor 

integrator and online updater of movement planning [2] [3]. We confirm the relationship 

between vertical RMSR and velocity [13], and show that a neural correlate exists. We suggest 

that, the higher the left PPC activity, the stronger is the sensorimotor integration [4] [5] 

regardless of any secondary task undertaken and thus the more stable is gait behavior.  

 

CONCLUSION 

 

Our study reliably and successfully investigated human walking while giving the participant 

freedom of movement as in real daily-life. Vertical RMSR is here proposed as a marker of the 

quality of walking as it correlates with other biomechanical features (i.e. velocity) and neural 

activations (i.e. left PPC sensor-level PSD). Our motivation is to design a fully-mobile setup 

transferable to different applications, for example monitoring of stroke patients in their local 

environment during recovery time. Our findings pave the path for more complex experimental 

design and analyses of the relationship between brain and behaviour in the real-world. 
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ABSTRACT: In neuroscientific research and development, brain signals are increasingly 

utilized to analyse unconscious processes and translate them into real-world actions. In 

particular, passive brain- computer interfaces rely on covert brain signals without the subject’s 

conscious effort. Neuroethical issues concern the areas of privacy, informed consent, personal 

identity, accountability, data protection, and the potential for misuse because of possible 

threats to the principles of respect for autonomy and non-maleficience in biomedical ethics. 

Consequently, neuroethical considerations should continuously be integrated into 

neuroscience research. 

 

INTRODUCTION 

 

Neuroscience has resulted in advanced methods to assess human brain functions. For 

example, passive brain-computer interfaces (pBCIs) react to covert and unconscious signals 

from users [1]. This situation evokes questions regarding the responsible conduct of research 

and innovation in the discipline of neuroethics. 

 

MATERIALS AND METHODS 

 

Materials included publications from the areas of ethics, applied biomedical ethics, and 

neuroscience, and methods included search for publications in databases with appropriate 

keywords. 

 

RESULTS 

 

Neuroethical concerns are related to privacy, informed consent, personal identity, 

accountability, data protection, and the potential for misuse. Thereby, novel neuroscientific 

methods like pBCIs may infringe ethical principles like the respect for autonomy and non-

maleficience in biomedical ethics [2]. 

 

DISCUSSION 

 

Given the research and development features of neuroadaptive technology, both the 

experimental subject and the neuroscientist may be partially ignorant concerning the nature of 

the data that emerges out of the experiments. For the subject, the decision to participate is 

influenced by insecurities and the need to overcome scepticism about the measurement of 

unconscious, but meaningful brain signals. The research subject is confronted with a 

divergence between the usual active and the uncommon passive effects on situations because  
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the pBCI mediates passive reactions in real settings. An informed consent [3] regarding data 

collection of automatic responses needs to be held to high standards because the data could 

allow unexpected and unwelcome insights that limit everyday privacy. For the neuroscientist, 

the questions ensue how to present which information to the participant and to which extent 

to train her to operate the device [4]. The subject, as a layperson, cannot comprehend all 

technical details; yet, she needs to understand the basic mechanisms and potential pitfalls. 

The accountability for actions, which are mediated by a computer, remains unclear because 

the subject’s brain signals are unconscious and the computer acts according to preset decision 

rules. This may unsettle her feeling of identity [5]. The neuroscientist has to comply with 

policies for data protection regarding delicate data. 

 

CONCLUSION 

 

Neuroscientific research endeavors, particularly in highly innovative and uncompleted areas, 

would benefit from continuous attention to and consideration of social, legal, and ethical 

aspects. 
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ABSTRACT: Emerging trends in pervasive neurotechnology and robotics are rapidly enabling 

novel opportunities for human-machine interaction and reshaping the human cognitive 

ecosystem. Clinical applications of neurotechnology such as brain-computer interfaces 

(BCIs), neuroprosthetics and wearable robotics enable to restore cognitive or motor function 

in patients with neurological disorders as well as to enhance their interaction with the world. 

While these trends can provide immense benefit for neurology and neurorehabilitation, they 

also open breaches for privacy and security of neural information [1-3]. The more the human 

body becomes intertwined with digital technology, the more it becomes vulnerable to cyber-

risk. 

This emerging domain of brain-machine interaction can be labeled neurohacking since it 

encompasses hacking activities which (either directly or indirectly) target neural information 

[4]. 

 

MATERALS AND METHODS 

 

Literature review of experimental and real-world case studies in relation to 

neurohacking.  

 

RESULTS 

Review results show that assistive neurodevices can be potentially co-opted for malicious 

activities such as extracting concealed private information from users without their consent 

[5-7], cracking encrypted repositories of neural recordings [8] or even interfering with the 

device’s functionality [9]. These findings open the prospects of extending the range of 

computer-hacking to neural computation. In parallel, ethical neurohacking strategies could 

enhance security and open development in neurotechnology. 

 

DISCUSSION 

 

In light of these results we identify three different types of neurohacking based on their level 

of penetration into neural computation. In addition, we distinguish malicious forms of 

neurohacking 

–characterized by the unauthorized misuse of neurodevices by malevolent actors- from what 

we call ethical neurohacking –characterized by the open and collaborative development of 

new neurotechnologies for the benefit of users. 

Finally, we delineate the normative and conceptual implications of neurohacking. At the 

normative ethical level, we address the issues of neuroprivacy, neurosecurity, self-monitoring 

and de-anonymization raised by emerging trends in neurohacking. 
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CONCLUSION 

 

Neuohacking poses novel ethical and regulatory issues at the interface between neurodaptive 

technology and society which require proactive assessment. 
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ABSTRACT: brain reading technology is becoming increasingly able to read mental states in 

human subjects. We propose some criteria to evaluate the extent to which this capacity could 

be utilized, currently or in the near future, for practical, societally impacting applications. 

 

INTRODUCTION 

 

Contemporary brain reading methods and technology promise to provide significant insights on 

human mental states and processes. Together with important scientific advances, such 

technology could bring up numerous societally relevant implications. In particular, the private 

character of mind might be affected to a certain extent, generating ethical and legal concerns 

[1], [2]. Orwellian scenarios, where brain reading technology could be misused by ill-

intentioned agents to invade our privacy against our will, have been in numerous occasion 

devised by mass media and popular press [3]. This possibility, however, depends in large part 

on the extent to which brain reading technology can be translated from (neuro)scientific 

research into practical application. A clear and widely usable conceptual framework to estimate 

the actual current and near future applicability of brain reading methods to different scenarios 

is currently missing. We propose an evaluative framework that is based on three criteria: 

performance, concealability and enforceability of a technology. 

 

MATERIALS AND METHODS 

 

Our work, in the fields of neuroethics, takes advantage of scientific literature and popular media 

to create an informed and reciprocally constructive dialogue between science and society. We 

use the method of philosophical inquiry, aiming at clarifying concepts and facilitating practical 

ethical discussion. 

 

RESULTS 

 

The three factors we outline -performance, concealability and enforceability-, though not 

necessarily the only ones, constitute useful criteria through which to produce an estimate of 

whether, when and in what practical scenarios a certain brain reading method could be adopted 

and utilized. 

 

DISCUSSION 

 

In order to be considered for adoption in most, if not in all, practical applications, brain reading 

methods must achieve certain performance standards. This is not only in terms of outcomes’ 

accuracy and reliability, but also in terms of the relevance the obtainable data has for the  
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question that is investigated. Many potential, potentially concerning scenarios, in particular 

those where mental privacy and civil rights are at stake, will also need the brain reading process 

to be concealable from a subject’s awareness. Furthermore, the most concerning ones among 

those scenarios involve the possibility to enforce the technology, and reliably read somebody’s 

brain against his or her will. 

 

 

CONCLUSION 

 

The three criteria we outlined facilitate a realistic understanding of the potential brain reading 

applications, allowing for a preliminary evaluation of the eventual implications. In turn, this 

might result in better general awareness and more timely reaction to potential ensuing ethical, 

legal and societal issues. 
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ABSTRACT: We present and discuss recent advances in the field of Human-Computer 

Interaction that utilize Functional Electrical Stimulation (FES/EMS) to enable users to interact 

with computers via their muscles. We analyse these interactive systems by: (1) discussing the 

novel opportunities and application scenarios; (2) draw analogies & idiosyncrasies between 

FES actuation and mechanical actuation; (3) identify challenges addressable by means of 

neuroadaptive technologies. 

 

INTRODUCTION: INTERFACES BASED ON ELECTRICAL MUSCLE STIMULATION? 

 

For the past six years, the Human-Computer Interaction (HCI) research community has been 

exploring functional electrical stimulation of human muscles (FES, also sometimes denoted as 

EMS) as a means for creating novel interactive systems. FES matured in the field of 

rehabilitation medicine [1]. Mostly, it assists patients in regaining motor functions, such as 

grasping [2], walking [3], swallowing [4] and standing upright [5]. On the other side, 

applications in HCI are simpler but interestingly different from their medical counterparts; these 

revolve around the actuating the users’ body as a means to represent computer feedback. We 

discuss interactive devices based on EMS by presenting four of our own works and two 

additional projects form the HCI community.   

 

NOVEL INTERACTION OPPORTUNITIES: ADAPTIVE WEARABLE INTERFACES 

 

As depicted in Figure 1, interactive applications of the FES technology tend to fall into three 

main areas:  (1) Training. (a) In PossessedHand [6], EMS was employed as an output system 

to learn haptic tasks such as playing a string musical instrument. Similarly, (b) Affordance++ 

[7] relies on this principle to allowing everyday objects to communicate their usage (e.g., a 

spray can that shakes by itself). (2) Information Access. By adding input to EMS-based 

systems researchers closed the I/O loop. Hence, providing a platform for information I/O [8]. 

This concept allowed for notification systems that communicate, for example, (c) walking 

directions [9]. Also, (d) by persisting the EMS output (e.g., as a physical trace of pen on a 

paper), we see a new generation of systems that aims at supporting sensemaking activities [10]. 

(3) Immersion. The first interactive applications of EMS show that it provides stronger 

sensations than the traditional vibrotactile feedback, for virtual experiences [11]. In fact, 

researchers showed how EMS effectively miniaturizes typical force feedback hardware (which 

is comprised of motorized actuators [12]), making it available, for instance, on mobile devices 

[13]. With this wearable approach, researchers investigated, how EMS counter-forces can 

simulate (e) collisions with objects or (f) walls in virtual reality [14].  
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Figure 1: Examples of interfaces, which actuate the users by means of electrical muscle 

stimulation. 

 

CONCLUSIONS: TOWARDS NEURO-MUSCULAR ADAPTIVE CONTROL LOOPS 

 

By using EMS/FES researchers created even smaller wearable devices. Since these interfaces 

share a strong analogy with mechanical actuators (e.g., exoskeletons [15]) it is worth discussing 

their idiosyncrasies at both the perceptual and hardware level. The next step for FES-based 

interfaces is to provide adaptability with the user’s voluntary intentions, for example, adaptive 

control loops using physiological data such as muscle tension (EMG [16]) or motor cortex 

activity (pBCI [17]). 
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ABSTRACT: Psychological concepts, such as anxiety, can be measured ‘in the wild’ using a 

range of wearable sensors. The measurement of psychophysiological signals in the field 

naturally includes a number of confounds such as noise, artefacts and baseline wander. Before 

getting a general idea of what may be possible from working with the data, it is necessary to 

use data conditioning methods to remove these unwanted influences. 

 

INTRODUCTION 

 

Several studies have attempted to use machine-learning approaches to classify stress using a 

combination of datatypes, including; physiological [1], activity [2] and locational. However, 

before classification algorithms can be applied, data must be prepared to enhance the 

prominence of the psychological influence. The occurrence of noise originating from activity 

that distorts the original data is unavoidable when collecting data ‘in the wild’. Moreover, the 

wrist sensor that we utilise is susceptible to varying impedance between the electrodes and skin 

due to poor contact. Thus, making it necessary for pre-processing methods to be used that can 

remove this unwanted noise. 

 

MATERIALS AND METHODS  

 

Our study involves the collection of psychophysiological data, such as heart rate and galvanic 

skin response, from ten subjects over the space of ten days, using the Microsoft Band 2 in 

combination with an Android smartphone. Of these days, five are under what we deem as a 

‘stressful’ condition (i.e. close to academic deadline), the other five days are under a ‘non-

stressful’ condition. This methodology of collecting data from participants ‘in the wild’, ensures 

that our dataset is ecologically valid and representative of physiological changes that occur as 

a result from the natural environment [3]. 
 

RESULTS  
 

Part of the ongoing work involves cleaning and removing artefacts from both; the physiological 

and contextual datasets. Figure 1 illustrates the effect that noise has on the movement signal, 

and how through appropriate filtering false positives of excessive movement can be removed. 

If we wrongly label the movement data (high or low movement), the challenge of accurately 

identifying moments of anxiety becomes considerably more difficult. By applying Savitzky-
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Golay and Moving Median smoothing techniques we are able to discern between genuine and 

artificial peaks within the movement data. 

 

 

Figure 1. A comparative analysis of three different filtering methods applied on acceleration 

data for cleaning. 

 

DISCUSSION & CONCLUSION  

 

When participants collect data in the natural environment, this process is unsupervised and the 

researcher cannot intervene. Moreover, certain activities occur in the real world that multiply 

the amount of data filtering that is required. This issue exacerbates the challenge of preparing a 

clean dataset that facilitates machine-learning experimentation. The work presented here is just 

a single component of a framework that carries the primary focus of identifying anxiety through 

the utilisation of data collected using wearable sensor technology. It is important to reduce the 

impact of noise in the data as this can result in the misidentification of anxiety from a classifier. 

Moreover, we expect to provide clarification as to whether contextual data can enhance the 

accuracy of a model that can classify anxiety. 
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EXPLORATION IN VR 
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ABSTRACT: The neuroscientific study of human navigation has been constrained by the 

prerequisite of traditional brain imaging studies that require participants to remain stationary. 

Such imaging approaches neglect a central component that characterizes navigation – the 

multisensory experience of self-movement. Navigation by actual walking or active driving 

combines external multisensory perception with internally generated self-motion cues. Here 

we apply Mobile Brain/Body Imaging (MoBI) [1][2] to investigate EEG effective source 

dynamics during ambulatory spatial exploration in an interactive sparse virtual reality (VR) 

setup. The analyses focus on spatial knowledge acquisition during unconstrained exploration 

and navigation. The present findings demonstrate (a) sufficient data quality to allow data 

analysis and mining procedures of EEG data acquired during real movement through space 

and (b) substantial findings regarding human spatial cognition. 

 

INTRODUCTION 

 

Navigation relies on idiothetic cues, i.e. information originating from navigators’ movements 

as well as allothetic cues, i.e., information about objects and space unaffected by changes in 

body position and orientation. A well-established theory of spatial learning in children 

assumes an ontogenetic sequence from egocentric (body-centered) to allocentric (external 

world-centered) representations of space implying a sequential development from coarse to 

complex spatial representations [3]. 

 

MATERIALS AND METHODS 

 

We recorded synchronized high density EEG and full body motion capture while participants 

explored an interactive sparse virtual reality (VR) maze environment by walking and probing 

for virtual wall feedbacks with reaching movements. An Oculus Rift DK2 was used for visual 

presentation with changes in position and orientation registered by a PhaseSpace Impulse X2 

motion capture system. We analyzed participants’ movements to mark and quantify events 

of navigation behavior that support spatial knowledge acquisition. This was used to weight 

ongoing behavior with regards to information uptake and resulting representations of spatial 

information. A single model AMICA was used to separate multivariate EEG input signals 

into a set of statistically independent components [4]. Subsequent time frequency analyses of 

clusters of similar independent components was followed by analyses of directed information 

measures within relevant brain networks [5]. 

 

RESULTS 

 

We report work in progress no final significant findings. We present pilot data as an example 

how data will be processed and what information can be derived from multimodal MoBI data. 
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DISCUSSION 

 

Data from pilot sessions demonstrate the feasibility of the experimental and analytical 

approach.  

 

CONCLUSION 

Meaningful navigation has been a driving force in human evolution and remains relevant today 

in the age of globalization and demographically changing societies. Therefore, a deeper 

understanding of the cognitive processes underlying navigation may lead to useful insights 

for the development and improvement of novel, mobile navigation assistive systems. 
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ABSTRACT: Self-Paced BCI applications usually choose the current motor imagery task based 

on the last n seconds of the streaming signal. Using a fixed size window disregards the fact that 

EEG-signal has dynamic behavior. In our work, we propose a different way of selecting the 

window size dynamically. The decision is based on the behavior of the filtered signal. We used 

Wavelet transform as filtering method instead of the commonly used butterworth filter, since 

Wavelet method tries to capture and retain signals with dynamic frequency response, while the 

butterworth filter modifies the signals and is usually used when the signal has a static frequency 

response. 

 

INTRODUCTION 

 

Brain Computer Interface (BCI) is a term for technology which enables direct communication 

between a human and a computer without the involvement of any peripheral nerve or muscle 

activity [1]. BCI research is commonly based on the Electroencephalography (EEG) 

technology. Motor imagery tasks are usually used for BCI systems, because they can "modify 

the neuronal activity in the primary sensorimotor areas in a very similar way as observable 

with a real executed movement" [2]. 

Important milestones in BCI research are the BCI Competitions. The results of competition III 

[3] and the experiments conducted by Lotte, Fabien and Guan, Cuntai [4], show that 

synchronous BCI applications can give reasonable results outside the laboratory. However, 

this is not the same for self-paced BCI. We believe the reason is the use of fixed size 

windows. By choosing the last n seconds [5] [6], we ignore the dynamic nature of the signal. 

We feel that by focusing on the start and end times of the motor task pattern, and also by 

cleaning it of irrelevant information, the accuracy of classification will be significantly higher. 

 

MATERIALS AND METHODS 

 

We used Datasets 1 and 2a from BCI Competition IV [7] [8] for signal analysis and pattern 

recognition. We also conducted our research only on EEG-channels that are said to be 

relevant for motor tasks [9] [10]. One of the essential decisions in BCI applications is the 

filtering method. Butterworth filter is commonly used, both in synchronous BCI [4] and in 

self-paced BCI [5] [6]. Stephen Butterworth stated in his work on the filter that "an ideal 

electrical filter should not only completely reject the unwanted frequencies but should also 

have uniform sensitivity for the wanted frequencies" [11]. The use of Butterworth filter on 

EEG signals ignores their dynamic frequency response which is rapidly changing over time. 

Instead, we suggest the use of Wavelet transform as a filtering method since it has the time-

localization property [12] (in contrast to Fourier Transform). Analytic wavelets are used for 

the purpose of time-frequency analysis [13]. We used the Bump Wavelet, since it exhibits 

better frequency localization results than the Morlet Wavelet (in other words it is better in 

describing the global behavior of the signal). We decided to filter the signal to the band of the 
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Sensorimotor rhythm (SMR 12.5 - 15.5 Hz), since SMR has a very strong role in the context 

of motor tasks [6] [14] [15]. The signal is transformed using Bump Wavelet and then inverted, 

keeping only frequencies in range 12.5 - 15.5 Hz. Fig.1 is an example for a signal after 

reconstruction and filtering (5 seconds of a right hand motor imagery, down-sampled from 

2048 Hz to 512 Hz). An interesting behavior appears in the filtered signal: the amplitude is 

monotonously increasing until reaching local maximum, and then monotonously decreasing 

until reaching a local minimum. This behavior is consistent for all signals from datasets 1 and 

2a. We call the section between every two adjacent local minima a "burst". We explored the 

properties of the bursts, as described in the next section. The bursts were extracted by the 

following simple heuristic steps: subtract the mean from the signal, calculate mean frequency 

(denote as mfreq), find max value in every two non-overlapped intervals of size mfreq, find 

local minima of the max values. 

 
Figure 2 reconstructed signal  

RESULTS 

 

The results regards to bursts by channel and motor task type, for each subject. Each tuple of 

subject:channel:motor-tasktype is denoted here as a group. All groups have a similar number 

of bursts (about 700 in dataset IV:1, and 500 in IV:2a). We also found that all groups (even 

those from different datasets) share the same seven dominant burst lengths, regardless the 

subject, channel or motor task type (which hold an average of 65% of the total burst count for 

a group). There are approximately 40-45 burst lengths for each group, and for all of them the 

dominant lengths holds more than 60% of the total burst count. 

 

DISCUSSION 

 

Besides the experimental results, the signal seems to have a "visual" behavior. Our conjecture 

is that each burst should be treated separately, and instead of using a fixed window size we 

should adopt a "burst-window". 
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CONCLUSION 

 

In our work we discovered a new pattern of the EEG-signals. The pattern is strong in the 

sense of being repeated among subjects, channels, and motor tasks. We suggest a further 

exploration of them. This might be the key for a real-world self-Paced BCI application. 
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ABSTRACT: In visual inspection it is crucial to detect and react to visual targets timeously and 

appropriately while ignoring distractions. We designed an experimental set-up that resembles a 

realistic visual inspection task that people perform in industrial manufacturing on the shop floor. 

With electroencephalography (EEG) we examined the functional connectivity (FC) in response 

to different auditory distraction levels while engaged in the task. Our results revealed 

significantly increased activation in the θ-band for a bilateral frontal-parietal network, in the β-

band between left motor cortex and bilateral parietal regions and in the γ-band for an extended 

bilateral network of occipital, parietal, motor and frontal regions. We found that visual 

inspection engages extended cortical networks in different frequency bands that are modulated 

in relation to cognitive demands.  

 

INTRODUCTION 

 

Industrial manufacturing requires inspection processes to guarantee the quality of products [1]. 

Visual inspection is a highly repetitive and exhausting task prone to human error [2]. The 

networks of visual search have been extensively investigated [3-5]. While most studies focused 

on visual distractions [6], other distraction modalities like auditory signals are often neglected. 

However, in a manufacturing environment sounds are a crucial factor that can increase the 

cognitive demands during inspection [7]. We expect that a realistic visual search task coupled 

with auditory distraction is highly cognitively demanding and will lead to additional network 

changes of cortical FC. Using EEG we examine to what extent search demands are processed 

in the human brain during different levels of auditory distractor suppression and which cortical 

regions are involved in visual search.  
 

MATERIALS AND METHODS 

 

We designed a goal-directed visual search task: Participants (n=7) had to press a button 

whenever they found an error in the scene while being exposed to high (IADS, neutral sounds) 

[8] and low auditory (pink noise sound) distraction levels. For the FC analysis [9] we focussed 

on the 4sec window before the button press. We evaluated the FC networks between different 

regions (defining seed electrodes in bilateral FR, OCC and left M1) and all other EEG channels 

for frequencies of interest (FOI). FOIs were entered in a cluster-based, non-parametric 

randomization test including correction for multiple comparisons between high and low 

distraction levels [10].  
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RESULTS 
 

Preliminary results of FC revealed significantly increased activation between bilateral frontal 

and parietal regions in the θ-band, left motor and bilateral parietal regions in the β-band and 

between bilateral network of occipital, parietal, motor and frontal regions in the γ-band, more 

so during high than during low distraction. No meaningful differences were found on a 

behavioural level. 
 

DISCUSSION 
 

Cortical network activity responds to auditory distraction during a realistic visual search task 

with increased FC in respective FOIs. The results probably indicate a compensation of the 

distraction level during the search time, since no behavioural differences were observed. 

However, we cannot exclude that other cognitive processes might contribute to the differences 

in network activity.  
 

CONCLUSION 

 

We found that visual search engages cortical networks in different FOI that are modulated in 

relation to cognitive demands, a proposal that warrants further investigation in a larger cohort 

of participants. While preliminary results are promising, data acquisition is still ongoing. 

 
Figure 1: Functional connectivity networks.  

The plots show the t-value topographies of functional connectivity (absolute value of the 

corrected imaginary coherence function) as a contrast between the high and low auditory 

distraction level for the θ-, β-, and γ-band. The black crosses indicate the seed electrode 

positions in the frontal cortex (FR: F4, F2, F1, and F3), left primary motor cortex (M1: C3, and 

C1), and in the occipital cortex (OCC: O1, Oz, and O2). Electrode clusters, showing significant 

differences in the non-parametric randomization test, are indicated by filled black circles. 

Colours indicate that the functional connectivity increases (red) and decreases (blue) within the 

4sec before the button press during a high distraction level in relation to the 4sec before the 

button press during a low distraction level. 
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ABSTRACT: Brain-computer interfaces (BCI) were originally designed to restore function to 

clinical populations whose neuromuscular pathways had been disrupted. More recently, BCIs 

have expanded to state and event monitoring for non-clinical populations [1,2]. In both cases 

the BCI approach is the same: 1) acquire user and domain specific data, 2) train the model, 3) 

apply the model to the user/domain for which it was trained, and 4) re-train as necessary. With 

the emergence of deep learning approaches researchers can now develop BCI models across 

users and domains. We propose that these Generalized Deep Learning-based Models (GDLMs) 

can provide a new dimension for neural analysis: one that is not predicated on the assumption 

that ground truth is clearly established by experimental conditions. 

 

INTRODUCTION  

 

GDLMs isolate spatio-temporal patterns of neural responses and have been shown to work 

across users and domains [3]. GDLMs offer a probabilistic view of the moment-by-moment 

fluctuations in the neural data that, we propose, can be incorporated into the analysis of subject 

behavior or state. The keys to this approach are 1) that the GDLMs are not trained on the data 

set to which they are applied and, thus, the required assumptions of ground truth for the 

analyzed data set are not made, and 2) GDLMs respond to generalized patterns of neural 

response and can ignore neural (e.g. movement related cortical responses) and non-neural (e.g. 

eye movements) artifacts [4]. 

 

MATERIALS AND METHODS  

 

We demonstrate our concept using an experiment involving target detection. In this experiment, 

16 subjects performed a free-viewing (FV) task and were instructed to watch for two types of 

targets. Upon detecting a target, subjects were instructed to discriminate as quickly and as 

accurately as possible whether the target was a threat (i.e. a human with a weapon or a table 

oriented such that it could hide an improvised explosive device) or a non-threat (i.e. a human 

without a weapon or a table that one could see under) and to push one of two buttons 

accordingly. We trained our GDLM to detect and isolate P300-like events using a combination 

of experiments: 1) fixation-related potentials, 2) rapid serial visual-evoked responses to targets, 

and 3) movement-related cortical potentials [4]. In post-processing we labeled all fixations in 

the FV data set as being 1) target-related fixations (i.e. occurred after target onset and before 

button response), 2) search fixations (i.e. occurred when no target was on the screen) and 3) 

everything else.  
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RESULTS 

 

We applied the GDLM to only the search fixations and found a significant negative correlation 

(p < 0.01, avg. corr. = -0.15) across subjects between the probability of a P300 event given a 

search fixation and subject reaction time (RT). This correlation was most pronounced during 

periods of lowest probability for a P300 event (see, for example, Figure 1). This result remained 

significant using window sizes ranging from 25s – 60s to compute P300 probability and avg. 

RT.   

 

 
 

DISCUSSION AND CONCLUSION 

 

While the neural mechanisms driving these results are still under investigation, we believe this 

demonstrates the use of GDLMs for applications beyond just closed-loop BCI. GDLMs enable 

trial-by-trial analysis of neural data by using models that have never been exposed to that data. 

These tools are mostly free of assumptions about the data in that they do not require ground 

truth labeling of the data. This enables more flexible analysis than traditional ensemble 

approaches.  

REFERENCES:  

[1] Wu, D., Lawhern, V. J., Gordon, S. M., Lance, B. J., & Lin, C. T. (2016). Driver Drowsiness 

Estimation from EEG Signals Using Online Weighted Adaptation Regularization for 

Regression (OwARR). IEEE Transactions on Fuzzy Systems.  

[2] Jangraw, D. C., Wang, J., Lance, B. J., Chang, S. F., & Sajda, P. (2014). Neurally and 

ocularly informed graph-based models for searching 3D environments. Journal of neural 

engineering, 11(4), 046003.  

[3] Gordon, S. M., Jaswa, M., Solon, A. J., & Lawhern, V. J. (2017) Real-World BCI: Cross-

Domain Learning and Practical Applications, Proceedings of the 22nd International Conference 

on Intellligent User Interfaces, March 13-15, Limassol, Cyprus  

[4] Solon, A, Gordon, S., Lawhern, V., Lance, B., A Generalized Deep Learning Framework 

for Cross-Domain Learning in Brain Computer Interfaces, companion abstract submitted to 

NeuroAdaptive Technology Conference, Berlin, 2017 

 

 

 

 

 

 

 

 



134 

 

 

 

 

 

 

A BIOFEEDBACK APPROACH TO INVESTIGATE 

NEUROCOGNITIVE MECHANISMS OF FEEDBACK-BASED 

LEARNING 

 
Aurore Jaumard-Hakoun1,2, Samy Chikhi1,2, Takfarinas Medani1, 2, Angelika Nair3, 4, Gérard 

Dreyfus1, François-Benoît Vialatte1, 2  

ESPCI Paris, PSL Research University, Paris, France1; Brain Plasticity Unit, CNRS UMR 

8249, Paris, France2; Drew University, Music Department, Madison, New Jersey3; 

College of Saint Elizabeth, Music Department, Morristown, New Jersey4 

E-mail address: aurore.hakoun@espci.fr; samy.chikhi@etu.parisdescartes.fr; 

takfarinas.medani@espci.fr; angelika.nair@gmail.com; Gerard.Dreyfus@espci.fr; 

francois.vialatte@espci.fr  

 

ABSTRACT: Understanding the neurocognitive mechanisms involved in feedback-based 

learning is a central question for bio/neurofeedback paradigms. We propose incorporating 

electrophysiological measurements of brain activity into a standard biofeedback approach of 

control of vocal performance, in order to investigate mechanisms of feedback-based learning. 

The idea is to use vocal biofeedback as a control task for feedback-based learning while 

recording electroencephalographic (EEG) activity. We expect this task to unravel neural 

correlates of learning within the context of a biofeedback interface. The conditions of our 

experiments will be evaluated using several questionnaires, aiming at helping us analyzing our 

results depending on the subjects’ psychologic profile. The combination of biofeedback training 

results related to psychology and neural correlates of feedback-based learning provide useful 

guidelines for designing a neurofeedback protocol. 

 

INTRODUCTION 

 

We propose a method to investigate the neurocognitive mechanisms of feedback-based 

learning. In our experiments, both beginners and trained singers are asked to perform singing 

warm-up exercises. A feedback, either continuous or discrete, provides them with information 

about their singing performance. We expect to find specific brain signatures to learning 

conditions (successful vs. unsuccessful trials) [1, 2], and therefore we investigate brain activity 

when the feedback is provided.  

 

MATERIALS AND METHODS 

 

Biofeedback training is divided into 5 training sessions, 20 healthy subjects will be collected. 

There are two kinds of feedbacks, (i) singing power ratio (SPR, [3]) and (ii) feedback about 

muscle activation using electromyographic (EMG) sensors placed on the upper and lower left 

masseter, and upper right sternohyoid (see Fig. 1). During the first two sessions, feedback is 

only continuous. From the third session onward, both feedbacks are continuous and post-trial, 

helping the subjects gaining autonomy [1, 4, 5]. During the two last sessions, feedback is only  
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post-trial. Brain activity is monitored by a 20 channel EEG Neuroelectrics Enobio device. Data 

acquisition, data processing, and feedback display are performed under Matlab R2016a. We 

investigate EEG event related potentials in response to discrete feedbacks (feedback event 

related negativity, P3a, P3b, Intentional Inhibition Potential), and EEG oscillations (Fourier 

power, phase synchrony) in response to continuous feedbacks. We control the psychological 

traits and states of the subjects which may interfere with the feedback learning task (see Table 

2).  

DISCUSSION 

 

Our data collection is still ongoing. We conducted a preliminary study about muscle activation 

feedback with a professional opera singer. We could predict singing quality from three EMG 

sensors placed above and below the masseter, and near the larynx; it confirms previous 

observations [6]. We also validated the Singing Power Ratio feedback relevance with both 

beginners, trained singers and a singing teacher from a national music school.  

 

 
Figure 1 : Recording system including EEG and EMG sensors, placed on 1. Upper masseter, 2. 

Lower masseter, and 3. Sternohyoid muscle. 

 

 

Table 2 : Scales used to evaluate psychometric traits and scales. 
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ABSTRACT: In the present study, we investigated which EEG frequency band is most suitable 

for developing a concentration-based neurofeedback system. To this end, we measured EEG 

signals at FPz while twelve subjects played a game (Piano tile 2) for 2 min, and stayed without 

any particular thoughts (resting state) for 3 min. As a result of comparing spectral powers 

estimated during resting state and playing game, only delta band showed significant changes 

while playing game (two-tailed t-test, p < 0.05) on group level. From the result, it is expected 

that spectral powers in delta band might be used for developing a reliable concentration-based 

neurofeedback system.   

 

INTRODUCTION 

 

Neurofeedback (NF) is a well-known method for treating various cerebropathia [1], [2], [3]. So 

far, however, there is still no definite indicator to accurately reflect changes in mental states 

(e.g., concentration) during NF. In this study, we attempted to find out frequency bands most 

suitable for tracking changes in concentration levels in order to develop a reliable 

concentration-based NF system.  

 

MATERALS AND METHODS 

 

Twelve healthy subjects participated in this study. In the experiment, each subject played a 

game (Piano tile 2) for 2 min twice to change their concentration levels, during which EEG 

signals were measured at FPz with a sampling rate of 512 Hz. EEG signals in resting state with 

eyes open were also recorded as baseline for 3 min. The subjects took a break without measuring 

EEG signals for 2 min between resting state and playing game. The raw EEG signals were 

notch- and bandpass-filtered at 59 - 61 Hz and 0.5 - 45 Hz, respectively. After removing EOG 

components, time-frequency analysis was performed using a window size of 1,000 ms with 

90 % overlap, and frequency powers were normalized by dividing the power of each frequency 

band by the sum of powers of five frequency bands at each time point (delta: 0 – 4 Hz, theta: 5 

– 7 Hz, alpha: 8 – 13 HZ, beta: 14 – 30 Hz, gamma: 31 – 45 Hz). To investigate task-specific 

frequency bands, mean powers over all subjects were estimated and compared between the two 

conditions for each frequency band.  

 

RESULTS 

 

All frequency bands show statistically significant changes in spectral powers for most cases on 

individual session level (delta: 20 of 24 sessions, theta: 17, alpha: 20, beta: 19, and gamma: 21), 

however only delta powers showed statistically significant changes while playing game on 

group level (two-tailed t-test, p < 0.05), as shown in Table 1.  
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Table 1: Mean spectral powers of five frequency bands for resting state and game (*: p < 

0.05) 

Frequency band Resting state Game 

 Delta* 0.362 ± 0.126 0.297 ± 0.079 

Theta 0.303 ± 0.071 0.341 ± 0.081 

Alpha 0.185 ± 0.079 0.215 ± 0.029 

Beta 0.194 ± 0.083 0.201 ± 0.062 

Gamma 0.085 ± 0.039 0.084 ± 0.045 

 

DISCUSSION 

 

In this study, we confirmed from the results of individual session and group level analysis that 

delta band is the most related to changes in concentration levels. However, the result may be 

limited due to using only one channel and task paradigm used in this study, and thus additional 

experiments should be performed with more electrodes and other paradigms to more precisely 

find out concentration-specific frequency bands.   

 

CONCLUSION 

 

Delta band is the most associated with changes in concentration levels, and it is expected that 

it might be potentially used for developing a reliable concentration-based NF system.  
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ABSTRACT: We aim to create a neuroadaptive game based on fNIRS that is designed to 

maximise the immersion of the player and distract from painful medical procedures. This 

abstract will describe the first part of this development, to assess simultaneous fNIRS responses 

to pain and game demand under controlled condition. These data represent the basis of the 

biocybernetic loop at the heart of the neuroadaptive prototype. 

INTRODUCTION  

Distraction can increase pain tolerance by diverting attention from the sensation of pain. 

Adaptive games have proven to be more effective distractions than standard games [1] because 

the demand of the game is adapted to the skill level of the individual. This neuroadaptive 

prototype will allow a player to achieve goals in-game regardless of their skill level by adapting 

to their level of expertise and enabling all players to experience a state of ‘flow’ or ‘high 

engagement’ [2]. 

MATERIALS AND METHODS  

We have opted to create a closed biocybernetic loop, as this loop will receive feedback from 

neurophysiological activation to ensure that real-time adaptation of the game is an effective 

process [3]. However, before this loop can be created, we must gather data that describes 

desirable and undesirable player states. Participants will play four difficulty levels of a racing 

game (easy, medium, hard and impossible) whilst wearing fNIRS sensors. fNIRS has been 

chosen because it is comparable to fMRI, but is cheaper and more convenient form of 

neuroimaging [4]-[5]. The participants will play all four game conditions with and without the 

cold pressor test. This atypical pain stimulus has been chosen to theoretically enable us to create 

a game that will effectively distract from different types of pain. The gathering of fNIRS data 

in three conditions (game alone, pain alone, game and pain in combination) will allow us to 

determine how the manipulation of game demand and experimental pain impacts on fNIRS 

activity in two sites of the cortical activity – the frontal cortex, which is sensitive to attentional 

processes [6], and the somatosensory cortex, which is part of the pain matrix [7]. The different 

conditions also allow us to determine the participant’s baseline pain threshold, so that we can 

use the potential difference in pain tolerance when the distraction is present as a measure of 

immersion. 

RESULTS  

Figure 1 shows lower levels of oxygenated haemoglobin in the frontal cortex during a ‘hard’ 

level compared to a ‘medium’ level. This indicates that the participant has lost interest in the 

game during the ‘hard’ level and is not concentrating as much. In this case, the participant was 

Session Name: PI-6 
 
Room: R1 
Session: Poster Session 
Time slot: 17:30 – 20:00 
Day: 1 
 



140 

 

more immersed in the ‘medium’ game condition, meaning that this level would provide a 

greater distraction from pain.  

Figure 1: A comparative sample of fNIRS data comparing the oxygenated and deoxygenated 

blood levels during ‘Easy’ and ‘Medium’ level gameplay. This figure shows a higher level of 

activation in the F1 area of the brain during a medium game than a hard game.   

 DISCUSSION/CONCLUSION  

We expect that results in the final study will show greater neurophysiological activity in the 

frontal cortex and a higher tolerance to pain when the participant is playing the medium/hard 

levels of game demand. Conversely, we expect that, when game demand is either easy or 

impossible, the pain tolerance of the participant will be reduced, and there will be a reduced 

activation in the frontal cortex. We hypothesise that an adaptive game, which uses fNIRS 

sensors to monitor the brain and make in-game changes, will allow patients to withstand pain 

for longer than a standard game. 
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INTRODUCTION  

Working Memory (WM) can be seen as the hub of cognition [1], but also as its bottleneck. By 

definition, it is the system that stores, maintains, and processes information while a subject is 

performing any cognitive task. It is limited by construction, in time and in capacity [2].  This 

study aims at localizing the brain sources underlying WM in real time. Electroencephalography 

(EEG) is an excellent tool for real time studies due to its high temporal resolution; however, its 

spatial resolution even for high density arrays is poor, and we do not have access to any sub-

cortical information.   

MATERIALS AND METHODS  

The recordings themselves were made during a real time experiment, in which a passive [3] 

BCI was used to estimate WM load during a mental arithmetic task. The BCI had been trained 

in a visual working memory task, therefore the mental arithmetic task was a cross-task. The 

BCI had an accuracy of 78%. Furthermore, subjects performed neurophenomenological 

validation: presented half of the time with sham feedback, subjects were able to correctly 

distinguish real from sham feedback on average 82% of the times. Control tests for 

disentangling potential motor and cognitive confounders were performed.   

For addressing the issue of spatial resolution and for reconstructing sub-cortical information, 

we used the Brainstorm [4] toolbox. In order to solve the forward problem (Poisson’s equation 

with zero conductivity at the boundary), we used the three shell head model [5].  For the inverse 

problem (finding the sources more consistent with the observed EEG signal at every time point), 

we applied the Tikhonov-regularized minimum-normestimation [6].   

DISCUSSION  

 There is not, to our knowledge, any study in the literature combining the characteristics of our 

WM study: real-time tests in a cross task, confounder disentanglement, and 

neurophenomenological validation. Based on the latter, we believe that our bio-marker reflects 

indeed activity of the central executive. As such, the sources associated to this activity might 

be of interest to researchers studying the neural correlates of WM.   
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ABSTRACT: We used deep and shallow convolutional neural networks (CNNs) to decode 

executed movements from the raw time-domain EEG signal. Our CNNs yielded competitive 

decoding accuracies compared with filter bank common spatial patterns (FBCSP) [1].  

Additionally, we developed visualization methods to understand the trained CNNs, including 

spatial maps that showed how band power features in different frequencies affected the CNN 

predictions. 

 

INTRODUCTION 

 

CNNs, wildly successful in computer vision through end-to-end learning from raw images 

[4][5], have so far not taken over the field of EEG decoding. Existing studies on CNNs for EEG 

decoding have only started to tackle the questions which input representation, network 

architectures and training methods lead to the best decoding accuracies [3][7][8].  Similarly, 

methods to understand what EEG features the CNNs learn are still sparse, especially for CNNs 

that use time-domain input. 

 

MATERIALS AND METHODS 

 

We investigated three CNN architectures of different depths to decode four classes of executed 

movements from time-domain EEG input, with FBCSP as a baseline (validated against 

published results) for the decoding accuracies. Our CNNs were designed to extract global 

spatial patterns and hierarchically nested temporal patterns. We compared different ways of 

extracting the training data, including a computationally efficient method to use many time 

windows to increase the number of training examples.  Also, effects of numerous design 

choices, such as the type of nonlinearity, were evaluated. Furthermore, we developed novel 

visualization methods to understand what band power features the CNNs extract from the time-

domain EEG signal. For more details, see [6]. 
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RESULTS 

 

Our CNNs reached or slightly exceeded the decoding accuracies of FBCSP; the use of recent 

deep learning techniques was necessary to reach these accuracies. Our visualizations provided 

spatial maps that showed the band power in typical motor-related frequency bands affected the 

decoding predictions of the CNNs. The spatial topographies of these effects were consistent 

with existing knowledge about the neural signature of executed movements with regards to the 

alpha, beta and high-gamma frequency bands. 

 

DISCUSSION 

 

We show that CNNs using the time-domain EEG signal can compete with well-established 

EEG decoding algorithms for executed movements, which rely on custom feature extraction. 

Furthermore, important insights can be learned from visualizations of CNN parameters. 

Validation on other data types, inclusion of newer deep learning methods such as domain 

adversarial networks [2] to combat non-stationarities and further visualization methods are 

areas of future work. 

 

CONCLUSION 

 

Our study makes further progress to establish end-to-end trained CNNs using time-domain 

input as a serious contender for EEG decoding and opens the door for using trained CNNs to 

gain insights about neural signals.  
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ABSTRACT: During the past few years, significant progress was made in devices and software 

for recording and analyzing bio-physiological signals. This short paper presents a general 

description of our current project: a new open-source Matlab-based toolbox, designed in order 

to help with biosignal data processing. SIGMAbox (SIGnal processing and MAchine Learning 

toolbox) gathers several pre-configured methods and algorithms for signal processing, statistics 

and classification. This toolbox is based on a graphical user interface (GUI) designed for end-

users without expert skills in programming, and should be useable with very limited 

intervention from the user.  

INTRODUCTION 

SIGMABOX encapsulates a collection of existing Matlab functions and scripts. Those methods 

are pre-initialized and configured; however, their hyper parameters may be chosen by the user. 

The parameters for the implemented functions are initialized according to the best ones found 

in the literature and validated on our data-base, and can be optimized by the user if necessary. 

Various visualization options for the data and the results will be included on the GUI.  

MATERIALS AND METHODS 

The present version of the toolbox allows the design of two-class classifiers for EEG data [1]. 

It can be used on offline analysis for pre-recorded data-bases. Also it can be adapted for online 

system such as a brain-computer interface. The data analysis on SIGMABOX is divided into 

two phases: a training and validation phase, and a test phase. The user selects the database, and 

chooses the suitable method(s) for preprocessing, artifact detection and rejection, feature 

extraction and selection, and classification. The implemented features extraction methods 

include spectral and statistical analysis, complexity and synchrony measures. The 

classifications algorithms use the built-in Matlab toolboxes [2] for linear discriminant analysis 

(LDA), quadratic discriminant analysis (QDA) and support vector machines (SVM). The users 

can visualize their data, compare the performance of the different classifiers, and display the 
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sensitivity, specificity, error rate and ROC curves. In the case of EEG signals, options for 

visualizing the electrical topography of the detected brain activity and for signal source 

localization are available using the Brainstorm packages [3]. 

DISCUSSION 

 

Contrary to the other available tools [4][5], advanced skills in programming are not needed to 

use SIGMAbox, most of the option can be reached from the main GUI. The toolbox offers 

options that users can select and run to get the desired results, together with illustrations helping 

in their interpretations. This allows for instance supervisors to verify the proper use of the 

toolbox by non-experts (e.g. master’s degree students) involved in a research project. Other 

options are under investigation, and will be added in future versions of the toolbox for specific 

types of signals such as electrodermal responses or breathing signals. The first version is 

expected to be available at the end of this year. 
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ABSTRACT: Recently, biometric authentication has received considerable attention because 

conventional authentication methods (e.g., ID/Password) cannot be fundamentally secure due 

to personal information extrusion. In this study, we propose a novel biometric authentication 

method based on EEG, which cannot be replicated by other people. To verify the feasibility of 

our method, EEG signals were measured while three subjects repetitively closed and opened 

their eyes. Changes in alpha activity during eyes open and closed were extracted for each 

channel as features, and inter- and intra-subject cross-correlation was used for identifying each 

subject. A mean identification accuracy was 90 %, demonstrating the feasibility of the proposed 

authentication method.  

 

INTRODUCTION 

 

Personal information leaks have been increasing due to advanced hacking skills and internet 

development, and they sometimes include personal authentication information. Thus, biometric 

authentication has emerged to overcome the shortcomings of conventional authentication 

methods (e.g., ID/Password). Representative methods of biometric authentication are 

fingerprinting and iris scan, but they would not be fundamental solutions because there is the 

possibility of copying the information of fingerprint and iris. The biometric authentication 

method based on brain signals would be an alternative because there is no way to imitate others’ 

brain signals with the current technology [1-2]. In the present study, we investigated whether 

alpha activity changes induced by eyes-closed can be used to develop an EEG-based biometric 

authentication system.  
 

MATERALS AND METHODS 

 

Three subjects participated in this study. Each subject was asked to close and open the eyes for 

15 s, which was performed 20 times. During the experiment, EEG signals were measured using 

thirty-one electrodes, which were broadly attached on the scalp. We calculated changes in alpha 

activity (8 – 12 Hz) by subtracting alpha powers estimated from the EEG signals acquired 

during eyes closed from those acquired during eyes open. This was performed for each channel, 

and thereby constructing channel-frequency pattern maps of changed alpha activity for each 

trial. Leave-one-out-cross validation with cross correlation (CC) was performed to calculate 

classification accuracy, where intra- and inter-subject CC was compared and the trial was 

assigned to a class (person) based on whichever had the largest mean CC value.  
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RESULTS 

 

Alpha power significantly increased for most electrodes when the subjects closed their eyes, 

and importantly changed patterns of alpha activity were different between the subjects (Figure 

1). The identification accuracies of the three subjects were 100.0 %, 70.0 %, 100.0 %, 

respectively. 

 

 

DISCUSSION 

 

We showed the possibility of using alpha activity induced by eyes-closed for developing an 

EEG-based biometric authentication system, but an additional experiment with more subjects 

should be performed to investigate session-to-session reliability and the effect of the number of 

electrodes on authentication performance for practical use. 
 

CONCLUSION 

 

From the analysis results, we confirmed the feasibility of using alpha activity for developing 

an EEG-based biometric authentication system.  

 
 

Figure 1: Examples of Alpha Activity Patterns Changed During Eyes Closed for Each Subject 
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ABSTRACT: As virtual reality (VR) emerges as a mainstream platform, designers have 

started to experiment new interaction techniques to enhance the user experience. We propose 

an EEG-based experiment methodology that evaluates interaction techniques in VR by 

measuring cognitive conflict through feedback-related negativity (FRN), by applying it to the 

fundamental task of 3D object selection using direct 3D input, i.e. tracked hand in VR. The 

cognitive conflict was intentionally elicited by manipulating the selection radius of the target 

object. We found that the amplitude of FRN highly correlates with the level of realism of the 

virtual hands. 

 

INTRODUCTION 

 

Recent advances in display and tracking technologies bring affordable and plausible VR 

experience to the mass market. A range of measurements and visualization tools assists 

designers in the evaluation of the objective characteristics of interaction. However, for the 

subjective measurements, such as level of presence, focus, or emotions, still rely on 

questionnaires and interviews, which cannot reliably address the changing dynamics of the 

interaction [1, 2]. 

 

MATERIALS AND METHODS 

 

Participants. EEG data were recorded from 10 right-handed participants (male). The mean 

age was 22.7 years (in a range of 20-26 years) with no prior experience of the experiment. 

This study had the institute’s human research ethics committee approval and was conducted 

in a temperature controlled and soundproofed room. 

Equipment. Participants were required to wear a wired EEG cap with 32 Ag/AgCl electrodes, 

including two reference electrodes (opposite lateral mastoids, modified international 10-20 

system) together with HTC Vive [3] as the head- mounted display and Leap Motion [4] for 

hand tracking. The EEG recordings were collected using a Scan SynAmps2 Express system 

(impedance <5kΩ, sample rate 1kHz). 

Experiment. Each participant performed the 3D object selection task with their hands tracked 

in VR. At the beginning of the trial, the participant would see two cubes on the table in VR 

(not physically) and instructed to touch first cube, and then the second cube by stretching their 

hand horizontally. The cube would turn red when it was touched virtually. Participants need 

to finish each task within 5s, and there was a 3s resting after each trial. The experiment uses 

a 3 by 2 with-in subject design. Independent variables are the hand style (realistic hand, 
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robotic hand, and 3D arrow; see figure 1(c)) and selection distance D (D1, equals to the size 

of the cube and D2 is twice the size of the cube). There are three 20-minute sessions with 

each session with one type of hand style. We used the oddball paradigm with total 120 trials 

(30 targets; 90 non-target) that shows three trials with condition D1 followed by a trial with 

condition D2. All trials were randomized in every session (see figure 1(a)) 

Method. ERP (event-related potential) analysis has been done on the collected EEG data from 

the participants performing the object selection task. EEG data were filtered offline with 1-40 

Hz and further cleaned for artifacts using ICA (independent component analysis) [5]. An 

epoch was defined from 200ms prior ande 500ms post-stimulus. 

RESULTS 

 

ERP analysis has been performed to find the local minima over the electrode average in the 

frontal region to find any event related negativity for all condition of trials. It was found that 

FRN for D2 is higher than D1 for S1 and S2 condition whereas there was no difference for 

the S3 condition (see figure 1(c)). Further analysis of event-related activity has been done for 

a time range for 120ms-220ms to see if this event related negativity is because of negative 

feedback due to the conflict in the participant. It is clear from figure 1(b) that participants 

showed the higher area under the curve (AUC) for FRN around 120-220ms during a change 

in distance (D2) compare to normal distance (D1) for the rendering of realistic hand style (S1) 

while FRN falls off more than half for rendering robotic hand (S2) for change in radius 

condition. One the other hand rendering of arrow hand style (S3) showed almost negligible 

AUC for FRN during a change in distance. 

 

 
Figure 1. a) Scene of the experiment with hand style; b) Area under curve for S1, S2 and S3 hand style 
during D1 and D2; c) Average ERP for all participants for all conditions 
 
 

DISCUSSION 

 

As hypothesized, both FRN and questionnaire suggest a correlation between the amplitude of 

FRN and the appearance of the virtual hand. This result aligned with the famous Uncanny 
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Valley theory [6], which states that as a robot approaches, but fails to attain, the likable 

human-like appearance, there will be a point where users find even the slight imperfection 

unpleasant. In our case, as the virtual hand becoming more realistic looking, the participants 

also become more aware of the errors. On the contrary, it is a bit surprising that there is almost 

no effect in FRN for the condition S3. The result implies that the participants are more tolerant 

or not very responsive to the error when they feel the virtual hand is less like a part of their 

body. The similar effect can also be found in the rubber hand illusion test [7, 8] where the 

participants felt less threatened to virtual threat, e.g. knife, saws, etc. when their virtual body 

counterpart was not rendered realistically. 

 

CONCLUSION 

 

This finding implies that depends on the goals of the interaction and the hardware capability; 

higher rendering quality might not always be good. For example, if the tracking precision is 

likely to be compromised or the display quality of an HMD is not ideal, then using a less 

realistic rendering style might be helpful. On the contrary, if the nature of task and hardware 

permits, participants favor the more human-like looking of their virtual body. 
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ABSTRACT: A group of brain structures responsible for the operant conditioning is widely 

recognized to belong to the rewarding system [2] and the neurofeedback training is considered 

to be a reinforcement learning paradigm [3]. Depending on the ergonomic parameters of the 

feedback signal the efficiency of learning and the intensity of plastic changes will vary.  Can 

we identify the correlates of efficient learning in the EEG recording and use them to tune the 

ergonomic parameters of the feedback? 

We exposed our subjects to real and mock feedback and contrasted the EEG during these two 

conditions to find the neuronal sources explaining the difference between the two states. We 

found statistically significant differences in the activity of brain structures previously 

implicated in the operant conditioning process. 

 

INTRODUCTION 

 

Neurofeedback is a reinforcement learning process and its efficiency critically depends on the 

extent to which the feedback signal is matched to the particular subject.  Feedback signal 

latency, color, shape, pitch, timbre and etc. are the ergonomic parameters that may potentially 

strongly affect the efficiency of learning and the intensity of plastic changes. Finding the proper 

ergonomic settings for each particular patient has a potential to boost the efficacy of the 

neurofeedback therapy and to further prove its usefulness in treating various neurological 

deceases. 

 

MATERALS AND METHODS 

 

The subjects were trained either with real feedback on their alpha waves instantaneous power 

extracted from P4 electrode or with mock-feedback. During the training they were instructed to 

sit as still as possible and were continuously presented visual feedback in the form of a circle 

with uneven border. The task was to make the circle border as smooth as possible by attempting 

to up-regulate their P4 alpha power. Mock feedback was derived from the EEG data recorded 

from the same subject during one of the previous trials and was thus unrelated to the current 

value of alpha power.  

 

Each session consisted of 8 experimental trials each of duration 45 s and mock vs real feedback 

condition trials were randomized.  Note that in this paradigm we did not aim at training alpha 

but rather attempted to catch the low-level difference between the consistent and inconsistent 

feedback as it is perceived by the brain. This explains the use of short trials (45 s duration) to 

minimize the chances for the subject to consciously disentangle and realize the presence the 
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two types of feedback (real vs. mock). 

 

For each participant we recorded the EEG data for mock and real feedback conditions at 500 

Hz sampling rate. The data were then filtered with a band-pass FIR-filter in 40 different 

frequency bands from 2-40 Hz range with 2 Hz bandwidth. The data from the two conditions 

(real and mock feedback) were contrasted using the CSP technique. 

 

In order to establish the significance of the observed differences we performed non-parametric 

randomization test to obtain the p-values of null hypothesis of no significant changes between 

the real and mock feedback conditions.    

 

RESULTS 

 

We found statistically significant components in the beta band, with frontal localization which 

may correspond to the anterior cingulate cortex (ACC), whose activity contrasts the real 

feedback and mock feedback conditions. Figure 1 shows the p-values and the topography of the 

CSP component for the most illustrative subject.  

 

Figure 1: . a)  p-values and b) the topography of the CSP component for the most illustrative 

subject. We observe statistically significant differences for components with greatest 

eigenvalue in beta frequency band (22 Hz) corresponding to the activation in frontal brain areas 

which may coincide with ACC (Figure 1). 

DISCUSSION 

Since the ACC is one of the key nodes of the rewarding network our results agree with the 

previous studies aimed at studying brain activations during the RL process.  
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CONCLUSION 
 

It remains to be seen whether or not the activity in the rewarding network nodes can be used as 

a gauge to tune the efficacy of the NFB by adjusting the ergonomic paraemetrs of the feedback 

signal. 
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ABSTRACT: This paper discusses the potential of functional near-infrared spectroscopy 

(fNIRS) brain-computer interfaces (BCIs) to identify an individual using only her brain data. 

fNIRS is a lightweight, portable, non-invasive functional neuroimaging tool that uses light to 

capture hemodynamic responses in the brain. We show that among 30 subjects, it is possible to 

determine the subject from whom a segment of the fNIRS data originated with 63% accuracy. 

Random chance is 3.3% for 30 subjects. Additionally, we explore the effect of the fNIRS brain 

data window size used during feature construction, on the classification accuracy. 

INTRODUCTION 

FNIRS has become more prevalent as a brain measurement tool, resilient to noise and artifacts 

[1,2]. Deep learning has been used to classify data obtained using fNIRS [3,4]. fNIRS has also 

been used for user identification (picking a specific individual out of a group) [5] and 

authentication (a binary, “yes” or “no” classification) [6] with SVM and Naive Bayes 

classifiers. This study uses fNIRS brain data obtained during resting state from a larger group 

than previously investigated [5] to perform user identification via deep learning. 

MATERIALS AND METHODS 

The data was obtained from 30 subjects during a study investigating mental workload during 

long supervisory control tasks [7]. The first 30 minutes (22200 measurements) were used, while 

the subjects were in a resting state. An ISS, Inc., Imagent device with wavelengths of 690 and 

830 nm was used. Each of its two probes, had four linearly spaced light sources, and one 

detector, with source-detector distances between 2.5 and 3.5 cm. The raw data was processed 

using Homer 2 [8]. Only data obtained through the two longest channels was used, as it is less 

noisy. A high-pass filter was applied at 0.5 Hz. Features were constructed over a set time 

window. The average, maximum, minimum, slope, and standard deviation were calculated for 

each window, for each channel, for each of the measures oxy-hemoglobin (HbO), deoxy-

hemoglobin (HbR), their sum, and their difference---resulting in a total of 40 features. The 

dataset was classified using a Multilayer Perceptron with 10 hidden layers, each with 200 nodes. 

The model was trained over the collection of the first 70% of the data for each subject, and 

tested on the last 29% of the data, removing the middle 1%. Each feature was z-score 

normalized before classification. This procedure was repeated for varied time windows, to 

explore the accuracy during each condition. As all the measurements were performed over the 

same time period, the number of instances per class depends upon the window size for each 

condition. To minimize the impact of fewer training instances, we modulated the epoch count 

(training iterations) to keep the total number of training instances constant over all tests (so, 

conditions with more windows were trained with more iterations of the same samples). 

Accuracy is calculated as the mean of accuracies of the last 25% training epochs for each 

condition. 
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RESULTS 

Table 1 shows testing accuracies for each window size. The maximum accuracy achieved under 

this configuration was 63%, for window size of 1 second, closely followed by 61% accuracy 

with window size of 3 seconds. As random chance is 3.3%, this is a significant result. 

Table 1: Accuracy of classification for each feature calculated over the specified time 

window, the number of instances per class before splitting into testing and training sets, 

the number of epochs used, and the standard deviation of the averaged accuracies.  
 

 1 sec 3 sec 9 sec 15 sec 24 sec 30 sec 60 sec 90 sec 

Unique 

Instances 

/Class 

1800 600 200 120 75 60 30 20 

Epochs 67 200 600 1000 1600 2000 4000 6000 

Accuracy 63% 61% 57% 55% 47% 51% 45% 47% 

Std. Dev 0.011 0.027 0.013 0.009 0.006 0.003 0.004 0.001 

 

DISCUSSION 

These results suggest that there may be a specific brain signature unique to each individual even 

during a resting state, which could have implications regarding our understanding of the brain, 

and the systems that can be built using this information. One limitation of the study is that both 

testing and training data were collected during one sitting for each subject, with sensor 

placement potentially affecting the classification, despite z-score standardization. Further 

studies should be done to support and extend these results, examining the aforementioned 

limitation.  

CONCLUSION 

 

We have shown that fNIRS has the potential to identify an individual, suggesting its potential 

for use in biometrics and active authentication. However, it is important to investigate the 

privacy threats of mining brain data, and to develop policies to prevent their misuse. 
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ABSTRACT: A hybrid BCI (hBCI) based on SSVEP and eye tracking enhanced interaction 

performance in terms of Accuracy (Acc.), Efficiency (Eff.) and Information Transfer Rate 

(ITR) in 29 of 30 participants, when compared to SSVEP alone. Decisions were based on 

collaborative processing. The SSVEP component was used for selection, reinforcing the eye 

gaze and solving the ‘Midas touch’ problem associated with eye gaze alone. The overall 

arithmetic mean Acc., Eff., and ITR for 29 participants completing the four (4-way 

navigation) tasks was 99.84% (±0.77%), 99.74% (±1.23%) and 24.41 (±6.35) bits/min, 

respectively. Review of the data shows that adaption of the decision process is possible; this 

would increase ITR and hence usability of the technology and provide further insight into the 

decision-making process. 

 

INTRODUCTION 

 

BCI paradigms such as imagined movement, P300 and Steady State Visual Evoked Potential 

(SSVEP) have been used successfully in hBCIs. This work investigated an hBCI that 

combined SSVEP with eye tracking [1, 2, 3]. Eye tracking provides efficient and reliable 

screen navigation. BCI paradigms lend themselves to the ‘selection’ component for 

reinforcement [4, 5]. 

 

MATERALS AND METHODS 

 

The hybrid system comprised SSVEP BCI using on-screen low frequency stimuli and the 

EyeTribe eye tracker. Thirty healthy volunteers (16M, 14F), from 21-73 years, average 37.6 

(±14.73) years participated. Participants completed four tasks, controlling an interface to 

traverse a hierarchal-menu structure and activate functions of a domestic smart-home 

environment, similar to the approach adopted by Kosmyna et al. in [6]. Participants were 

required to follow verbal instructions to navigate the menu structure and execute 4-way 

control: left, right, up, and down commands. The first task required participants to interact 

with smart-home lighting in the dining room of the virtual environment. The second required 

participants to select a target video for playback on the television and subsequently end 

playback when requested. In the third task users were required to navigate to the ‘talk’ menu 

and communicate using predefined iconography and computer-synthesised speech to indicate 

‘hunger’. The fourth task required users to freely navigate the interface (without instruction) 

to complete a goal;in this case to control the extractor fan in the kitchen. SSVEP Signal 

processing and feature extraction adopted algorithms proposed in [7] 
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RESULTS 

 

For participants using SSVEP-only Acc. were observed in the range [65%-100%], and Eff. 

in the range [41%-100%]. The mean Acc., Eff., and ITR over all four tasks was 93.49% 

(±7.32%), 89.71% (±12.30%), and 23.18 bits/min (±6.83), respectively. Comparatively, 

hBCI, Acc. were observed in the range [94%-100%] and Eff. in the range [89%-100%]. The 

overall arithmetic mean Acc., Eff., and ITR for all participants completing the four tasks was 

99.84% (±0.77%), 99.74% (± 1.23%) and 24.41 (± 6.35) bits/min, respectively. 

 

DISCUSSION 

 

The results show higher levels of Acc. and Eff. for the hBCI. However, it was evident that 

through offline data analyses that decisions could have been made earlier, Fig. 1, if the 

decision criteria could have been adapted to the performance of the eye tracker and BCI. This 

would increase the ITR and robustness, thereby reducing the possibility for user fatigue and 

frustration. In addition, this work has shown that Acc. and Eff. can be improved beyond 

standard dwell-time based eye tracking alone, which in previous work achieved a mean Acc. 

of 90.61% (± 4.96%), Eff. of 84.55% (± 8.33%), and ITR of 39.42 (± 5.45) bits/min for 20 

participants completing the same tasks. 

 

 
 

Fig. 1. SSVEP, eye tracking and collaborative decisions for a representative particpant. 
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CONCLUSION 

 

The hBCI performance exceeded the SSVEP-BCI across the performance metrics, returning 

higher Acc., Eff. and information throughput. It can offer more robust communication, 

without decreasing the ITR. However, adaptive processing could further enhance 
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ABSTRACT: Real-time analysis of neurophysiological measures for system control or 

adaptation by means of supervised machine learning methods requires training data that is 

labelled for specific events. Event labelling is often not automatized and most experiments are 

bound to a static laboratory setup. However, for example embedded Brain Reading (eBR) for 

real-world settings requires automated event generation for training and online adaptation of 

close-loop systems. Here we investigate label generation by means of exoskeleton joint data. 

 

INTRODUCTION 

 

To embed neurophysiological measures such as the human electroencephalogram (EEG) 

directly into the control of a system, eBR [1] was developed. It requires automated labelling of 

neurophysiological data. Different data can be used for movement onset detection such as the 

electromyogram (EMG) [2], motion-tracking systems (MTS), e.g., the Qualisys system [3], or 

data from external devices (see [4] for a comparison of different sources). What source should 

be chosen depends on the setup and the goals of the approach. For example, EMG can be used 

for training and online adaptation of the classification algorithm [5]. However, by means of 

EMG not all movements might be detected [6]. Thus, to use other or additional sources is 

reasonable. MTS are often used for movement onset labelling but are stationary and often 

inapplicable for real-world setups. In this work, we investigate movement onset labelling based 

on exoskeleton joint data. Results are preliminary since the exoskeleton was designed for 

teleoperation without a grasping option. Currently an exoskeleton for rehabilitation purposes is 

built. 
 

MATERALS AND METHODS 

 

We conducted a study with 4 subjects performing movements with both arms wearing an upper 

body exoskeleton. We recorded the angles of all 18 joints, 32 channels EEG and the 3D-

positions of the arms’ joints with an MTS, i.e., Qualisys systems with 6 cameras. Passive 

infrared markers were attached to the subject’s wrist to detect movement onsets based on a 

MTS. For the exoskeleton the forward kinematic was used to derive the hand position in space. 

For both data sources the movement speed of both hands was calculated as the Euclidean 

distance between to consecutive samples. For pre-processing we used a mean filter and a 

variance based filter, for enhancing fast changes in the signals, both filters had a window size 

of 1s. After normalizing the speeds to values between 0 and 1 a threshold of 0.15 was used to 

detect rough onsets. From the found onsets the speed was analysed backwards, the first point at 

which a positive slope was detected was defined as the real onset. Further a minimum resting 
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of 1s was used, i.e., the signals must stay below 0.15 for 1s before a new onset can be detected. 

For comparison between the two systems, we performed a one-way ANOVA with system as 

within-subjects factors. 

 

RESULTS 

Analysis of exoskeleton data resulted in later onset detection compared to the MTS across 

subjects [F1, 336=54.58, p < 0.001, difference between two systems across all subjects: 0.21s]. 

DISCUSSION 

In applications for motor rehabilitation that make use of an exoskeleton, movement onsets can 

be detected based on the systems’ joint data. The delay can be explained by the loose connection 

of the subject’s lower arm to the exoskeleton. We could not use the hand interface, since it does 

not allow grasping tasks. Therefore, the hand could be moved to some extent without moving 

the exoskeleton (see Figure1) resulting in an earlier detection with the MTS. 

Figure 1: Experimental Scenario. Subjects wearing an exoskeleton performed various 

movements with both arms. In total 15 symbols (right) instructed subjects which movement to 

perform next. Symbols were displayed on a monitor approximately one meter in front of the 

subject. From top left to bottom right symbols meant:  relax, lift left arm, lower left arm, lift 

right arm, lower right arm, lift both arms, lower both arms, grab cup and bottle, pour into cup, 

put down cup and bottle, grab cup, grab bottle, drink, grab box, put down box. The subject (left) 

is shown while performing the green-framed movement (grab cup and bottle).  Trials without 

object manipulation lasted 7 seconds and all others 10 seconds, movements were performed by 

the subjects’ own speed. 

CONCLUSION 

 

Our method for exoskeleton-based movement onset detection is online capable since the 

forward kinematic can be calculated from the exoskeleton joint data in real time. It can be used 
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in embedded approaches such as eBR. Similar to EMG data labels can be used to adapt a 

classifier online or used in a multimodal labelling approaches to achieve more reliable results.  
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ABSTRACT: Mindfulness has been introduced in schools, e.g., in the USA 

(http://www.mindfulschools.org/), in UK (https://www.mindfulnessfoundation.org.uk/, 

http://www.dharmaschool.co.uk/mindfulness-in-education/) in recent years. School students 

have been trained to be mindful. The effect of mindfulness has been confirmed that it helps 

among others the concentration of school students and their calmness. What kind of data can 

be used to model mindfulness states? How can wearable technologies be deployed to give 

students feedback about their (un-)mindful state? In this paper, we review a range of possible 

metrics for mindfulness. 

 

INTRODUCTION 
 

Mindfulness has been introduced in schools (e.g., in the USA, in UK1) in recent years. School 

students have been trained to be mindful. The effect of mindfulness has been demonstrated 

that it helps among other effects the concentration of school students and their calmness. It is 

therefore useful to remind a student when he/she is in an unmindful state, which may correlate 

with negative learning outcome. One possible solution for such a situation is that a 

technological device might control the mindful state of the student and give him/her feedback 

as a means of reminding. How can mindfulness be determined? Most instruments are based 

on self-report of mindfulness practitioners, e.g.: The Five Facet Mindfulness Questionnaire 

(FFMQ) (Baer [1], Van Dam [8]), Mindful Attention and Awareness Scale (Hansen [3], Van 

Dam [9]), Toronto Mindfulness Scale (TMS) (Davis [2]), The 30- item Freiburg Mindfulness 

Inventory ([5]). Instead of measuring mindfulness of practitioners by self- reporting, this 

project focuses on deploying wearable technology to measure mindfulness and to give 

students feedback. In this paper, we review possible metrics for this purpose. 

 

RESULTS 

 

Electroencephalography (EEG) has been used to measure mindful states in many studies. 

Lomas and colleagues have reviewed databases of EEG studies from 1996 to 2015 [7]. The 

authors reported that with a database of 1715 subjects “mindfulness was most commonly 

associated with enhanced alpha and theta power as compared to an eyes closed resting state” 

and “no consistent patterns were observed with respect to beta, delta and gamma 

bandwidths”. This review has not differentiated the population of test persons. Thus, no 

conclusion about the specific population of school students could be made. Beside EEG, 

another type of data, e.g., Electrocardiography (ECG) (including Pulse Arrival Time, Heart 

Rate, Heart Rate Variability (a psychophysiological marker of mental and physical health)) 

could be relevant for measuring mindfulness. Krygier and colleagues [6] reported that  
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mindfulness practice increased normalized high-frequency Heart Rate Variability. These types 

of data can be collected using wearable devices, e.g., a simband (https://www.simband.io/). 

Howells et al. 

[4] used higher heart rate variability high frequency (HRV-HF) as an indicator to measure 

mindfulness: 12 bipolar patients showed a reduction of heart rate variability high frequency 

(in addition to other indicators) after attending 8 weeks of a mindfulness retreat. 

 

CONCLUSION 

 

In order to measure mindfulness of school students, in addition to collecting EEG data using 

a head cap, ECG data can be deployed. These types of data can be collected using wearable 

technologies such as smartwatch (e.g., simband). The principle investigator plans to conduct 

this project as following: 1) collecting data (EEG and/or ECG) of expert mindfulness 

practitioners and developing a computational model, 2) developing a real-time computational 

model of mindfulness for students, 

3) developing a strategy for reminding students in case their mindfulness state is below 

threshold. 
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