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09:00 - 09:40 Keynote: Fabien Lotte 
09:40 - 11:00 Session: BCI & Applications I 
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09:00 - 12:00 Overview of BCI research landscape in France, UK, and Germany 
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Fabien Lotte 

Artificial Intelligence for passive BCI design: the 
good, the bad and the maybe 
 

Monday, October 10t h 
09:00 – 09:40 

 

Passive Brain-Computer Interfaces (pBCIs) hold great promises for Human-Computer Interaction (HCI), 
notably to monitor users’ sensory, cognitive, affective or conative states during interaction, and adapt 
this interaction accordingly. Artifical Intelligence (AI) methods, notably machine learning classifiers, 
have always played a key role in pBCI designs. This role is currently increasing even further by now 
encompasing methods not only to classify brain signals but also to model the users’ behaviour, 
intentions and needs as well as to design intelligent adaptations, based on such models. While 
numerous publications on AI methods for (p)BCIs are released every month, such publication 
landscape may sometimes appear like the “far west”, with a lack of research rules and standards, and 
an apparent difficulty in identifying solid works from the rest. Therefore, in this talk, I will discuss on 
the pros and promises of various recent AI algorithms for pBCI designs (the good), but also on the flaws 
and common pitfalls of AI use for (p)BCIs (the bad), as well as related perspectives for the future of the 
pBCI field (the maybe). More precisely, I will first start by the bright side (the good), by presenting 
recent and promising advances in Riemannian geometry and deep learning classifiers for mental state 
monitoring, and discuss of their respective merits when compared with each other. I will then move 
to more concerning issues (the bad), by identifying various pitfalls in AI studies for (p)BCIs, including 
lack of reproducibility, biaised evaluations and comparisons, ignorance of common confounding 
factors or lack of usability in practice, among others. Finally, I will end on a more optimistic note, by 
presenting some perspectives on AI for pBCIs (the maybe). I will notably cover future promising 
applications of AI for pBCIs, such as pBCI-based personalized and adaptive medical rehabilitation or 
artistic experience, as well as open challenges such as the need for models of variability in (p)BCIs and 
for considering pBCI users in all stages of their design, including in AI algorithms. 

 

Fabien Lotte obtained a M.Sc., a M.Eng. (2005), and a PhD (2008) from INSA 
Rennes, and a Habilitation (HDR, 2016) from Univ. Bordeaux, all in computer 
science. His research focuses on the design, study and application of Brain-
Computer Interfaces (BCI). In 2009 and 2010, Fabien Lotte was a research fellow at 
the Institute for Infocomm Research in Singapore. From 2011 to 2019, he was a 
Research Scientist at Inria Bordeaux Sud-Ouest, France. Between October 2016 
and January 2018, he was a visiting scientist at the RIKEN Brain Science Institute, 
Japan, and then in 2019 a visiting associate professor at the Tokyo University of 
Agriculture and Technologies (TUAT), still in Japan. Since October 2019, he is a 

Research Director (DR2) at Inria Bordeaux Sud-Ouest. He is on the editorial boards of the journals Brain-
Computer Interfaces (since 2016), Journal of Neural Engineering (since 2016) and IEEE Transactions on 
Biomedical Engineering (since 2021). He is also “co-specialty chief editor” of the section “Neurotechnologies 
and System Neuroergonomics” of the journal “Frontiers in Neuroergonomics”. He co-edited the books ”Brain-
Computer Interfaces 1: foundations and methods” and ”Brain-Computer Interfaces 2: technology and 
applications” (2016) and the ”Brain-Computer Interfaces Handbook: Technological and Theoretical Advance” 
(2018). In 2016, he was the recipient of an ERC Starting Grant to develop his research on BCI. 



7 
 

Marcello Ienca 

The Ethics and Philosophy of 
Neurotechnologies 
 

Monday, October 10t h 
14:00 – 14:40 

 

In recent years, the debate on the ethical implications of advances in neuroscience and 
neurotechnology has resonated widely not only in academia but also at the political level of 
governmental and intergovernmental organizations. Various governance proposals have been made 
in order to ensure the responsible development of neurotechnologies, promote fair access to them 
and prevent their misuse. Among these approaches, the most foundational one is that of the so-called 
‘neurorights’, i.e. the fundamental human rights linked to the sphere of the human brain and mind. 
From the perspective of neurorights, the human brain and the cognitive and affective processes it 
enables, represents a domain of fundamental ethical-normative salience. Therefore, it must be 
protected through regulatory reforms concerning either the evolutionary reinterpretation of existing 
rights or the introduction of new rights. Among the rights that have been proposed are the right to 
cognitive liberty, mental privacy, mental integrity and psychological continuity. The neurorights 
approach serves to identify certain unauthorized forms of intrusion into a person’s brain function 
(especially if they result in damage to the cognitive, affective or behavioral sphere) and banish or limit 
them as violations of the aforementioned rights. International organizations such as the UN, UNESCO, 
the Council of Europe, the OECD as well as national parliaments such as that of Chile are working on 
the advancement of neurorights through various forms of regulatory instruments. This presentation 
will provide an overview of the ethics and policy challenges of neurotechnologies from a neurorights 
perspective, inform the audience about ongoing regulatory efforts by governmental and 
intergovernmental agencies, and propose a novel interdisciplinary approach to the assessment of 
ethical considerations in neuroscience called “experimental neuroethics”. 

 

Dr. Marcello Ienca is a Principal Investigator at the College of Humanities at EPFL 
where he leads the ERA-NET funded Intelligent Systems Ethics research unit. He is 
also an affiliate member of the Health Ethics and Policy unit, Department of Health 
Sciences and Technology, and an ordinary member of the Competence for 
Rehabilitation Engineering & Science at ETH Zurich, Switzerland.  

Dr. Ienca's scholarship focuses on the ethical, legal, social and policy implications 
of emerging technologies. In particular, he investigates the broader implications of 
new (and often converging) sociotechnical trends such as Artificial Intelligence (AI), 

big data, digital epidemiology, robotics, assisted living, digital health, social media, dual use, and 
neurotechnology. He and his team use both theoretical and empirical methods to explore the requirements for 
responsible innovation, ethically-aligned technology design, user-centred design, and human-centered 
technology assessment.   
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Caterina Cinel 

Brain-Computer Interfaces for Group Decision-
making 

Monday, October 10t h 
18:00 – 18:40 

 

Making decisions—either individually or in group—is an important aspect at all levels of everyday 
life. Decisions (for example made by government, military or hospital management) can be highly 
critical in nature, with mistakes possibly resulting in extremely adverse outcomes, including loss of 
lives. Often, decisions must be made with limited amounts of information, or indeed too much 
information for any single person to process in a meaningful manner, hence involving a high degree 
of uncertainty. In such difficult conditions, groups usually make better decisions than individuals, 
who tend to make suboptimal decisions.  Groups have inherent error correction capabilities, but, 
unfortunately, they also suffer from many biases and flaws, such as difficulties in coordination and 
interaction between group members, reduced member effort within a group, strong leadership, 
group judgement biases, and so on. 

Brain-Computer Interfaces (BCIs) have traditionally been used as assistive devices for restoring 
capabilities in people with disabilities. However, an important and exciting line of research has 
turned them into tools for augmenting cognitive functions in healthy people.  

For nearly a decade, this has been a major strand of research within the Essex BCI-NE lab, where we 
pioneered the idea of combining brain signals (and other physiological and behavioural data) across 
multiple people to achieve a form of emergent group augmentation particularly for decision-making. 

Over this period, with significant support from the UK Ministry of Defence, we have developed a 
collaborative BCI (cBCI) technology that has delivered significant improvements over the group 
performance achieved by more traditional methods of integrating individual decisions, for 
progressively more and more realistic environments. 

In this presentation, I will give an overview of the work done in our lab with cBCIs, from their precursors 
to the range of techniques and results obtained in nearly a decade, in decision tasks, including: 
identification of visual targets in cluttered environments, comprehension of military radio 
communication, face recognition, military simulations of outposts and strategic decision making in a 
pandemic. I will touch upon our recent results with decision making systems where BCI-assisted 
humans make decisions together with AI agents treated as peers.  

Caterina Cinel is a Lecturer at the University of Essex (UK) and a co-founder of the 
Essex BCI-NE lab. Her background is in cognitive psychology and neuroscience and 
has expertise in multisensory perception, attention, decision-making and memory, 
BCIs and cognitive augmentation. Her research is highly interdisciplinary, and has 
gradually focussed on BCIs for cognitive augmentation, including hybrid 
collaborative BCIs for group decision-making. The majority her work in that area 
has been funded by UK MoD: two past projects as co-I, and currently a US DoD/UK 
MoD funded Bilateral Academic Research Initiative (BARI). She has co-authored 
50+ peer-reviewed publications, has a Google Scholar h-index 22, is an editor for 

Brain Sciences, and an Associate Editor for the Frontiers in Neuroergonomics and Frontiers in Human 
Neurosciences.   
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Moritz Grosse-Wentrup 

Brain-Artificial Intelligence Interfaces (BAIs) 
 

Tuesday, October 11th 
09:00 – 09:40 

 

Brain-Computer Interfaces (BCIs) provide alternative communication channels to users with impaired 
peripheral nervous systems. They are of limited utility, however, if users lack the cognitive abilities to 
operate a BCI. For instance, a BCI that decodes intended movements of vocal tract muscles to 
synthesize speech would be of limited use to a stroke patient with Broca’s aphasia. To overcome this 
limitation and expand the group of people that could benefit from neural interfaces, I introduce a new 
class of systems, which I term Brain-Artificial Intelligence (BAI) interfaces. BAIs aim to connect the brain 
with an AI system that replaces a lost cognitive function. Speech BAIs, for instance, would decode high-
level cognitive states that enable a conversational AI to generate sentences congruent with their users’ 
communication intents. I review recent advances in AI that render BAIs feasible, discuss how to adapt 
our decoding pipelines from BCIs to BAIs, and outline the challenges that we need to address to turn 
BAIs from a vision into a reality.  

 

Moritz Grosse-Wentrup is full professor and head of the Research Group 
Neuroinformatics at the University of Vienna, Austria. He develops machine 
learning algorithms that provide insights into how large-scale neural activity gives 
rise to (disorders of) cognition, and applies these algorithms in the domain of 
cognitive neural engineering, e.g., to build brain-computer interfaces for 
communication with severely paralyzed patients, design closed-loop neural 
interfaces for stroke rehabilitation, and develop personalized brain stimulation 
paradigms. He has received numerous awards for his work, including the 2011 
Annual Brain-Computer Interface Research Award, the 2014 Teaching Award of the 
Graduate School of Neural Information Processing at the University of Tübingen, 
and the 2016 IEEE Brain Initiative Best Paper Award. 
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Simon Vogt 

The Unhackable Brain – Why Brain-Computer 
Interfaces will become a Matter of 
Cybersecurity 

Tuesday, October 11th 
15:40 – 16:20 

 

Brain-Computer Interfaces (BCI) are undergoing a rapidly accelerating pace of research and 
development. Today, emerging applications and use-cases outside of controlled laboratories are still 
at an early technological stage. Nevertheless, it is clear to see that the future applications of BCI span 
new domains, especially in the context of consumer products for interaction with robots, 
autonomous vehicles, computer games or metaverse/Web 3 scenarios. In parallel to those new 
communication channels between machines on the one side and the human brain on the other side, 
privacy and security concerns must be taken into account as early as possible. 

The Cyberagentur as a federal German organization has the mission to find and foster breakthrough 
research in technology fields that are relevant to the security of every citizen, company, authority or 
the infrastructure with a scope of 10-15 years into the future. For us, BCI are a focal topic of interest. 
We aim to escort and guide technology development in this domain based on a privacy and security 
by design approach and have thus commissioned the development of a “Framework for Preserving 
Privacy and Cybersecurity in Brain-Computer Interfacing Applications” that has just been finished and 
will be presented during this conference. 

For us, the human brain represents the highest resort for privacy and security of information – and we 
aim to make sure that this will never change. 

 

Dr. Simon Vogt leads Cyberagentur's research activities in the domains of human-
machine interaction. After having served as Navy Officer for almost 15 years and a 
PhD in information systems research, he joined the German Forces Cyber 
Innovation Hub, aiming to connect startups and innovative ideas and methods with 
the needs of the troops. He then became the founding head of IBM's Garage for 
Defense - an industry approach to fostering agile methodology within large-scale 
research and development projects. After Cyberagentur was founded in 2020, 
Simon Vogt joined a few months later as one of the first employees. 

His first projects examine the future applications of neurotechnology and brain-computer interfaces (BCI) 
within human-machine interaction, focusing on how to ensure and maintain security, privacy, and integrity for 
brain data. 
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Matt Richins 

Neuro-tech in Defence and Security 
 

Tuesday, October 11th 
16:40 – 1:20 

 

Matthew Richins is a Psychologist in the Human and Social Sciences group at 
Defence, Science, and Technology Laboratory. Matt's current work involves 
understanding, assessing, and improving the cognitive components in complex 
socio-technical systems and optimising physical function, health, protection and 
performance of personnel across the Defence and Security workforce.   
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Exploring Human Centredness Through 
Neuroadaptive Technology 

 
Karran A.J1, Boasen J1,  Tadson B1, Beauchemin N1, Charland P2, Courtemanche F1, Leger P-M1, 

Senecal Sylvain1 
 

1) HEC Montréal 
2)  Université du Québec à Montréal 

 
Keywords: BCI, AI, HCAI, Machine Learning, Classification, Education, E-Commerce 

Abstract 
Neuroadaptive technology has become a tool to overcome physical impairments, augment specific 
cognitive capacities and a method for providing improved time to insight for user experience testing. 
Rapid improvements in the size and sensitivity of sensor technologies and methods of classifying brain 
activity into specific states have shown brain-computer interfaces (BCI) to be both a useful assistive 
technology and a general interfacing technology for human-machine systems (Zander & Kothe, 2011). 
BCI technology has been defined as "a device that reads voluntary changes in brain activity, then 
translates these signals into a message or command in real-time" (Guger et al., 2021). As such, BCI's 
are a core component of systems that utilise the user's neurophysiological data as input to a computer 
system, which then performs actions to adapt, assist or provide feedback to the operator. A common 
application of BCI technology is to measure and classify operators' mental workload (MW) under 
various conditions. Studies have found (Grimes et al., 2008) correlations between MW and variance in 
brainwaves expressed as increases or decreases in α (8-12hz) and θ (4-8hz) in pre-frontal brain regions. 

We will discuss a program of research and development that will be completed in two phases. The 
research aims to investigate the use of a brain-computer interface to monitor and classify operator 
mental workload in real-time to drive interface adaptions to aid the operator make better decisions in 
an e-commerce context or improve learning outcomes in an education context. In phase one, two 
studies will utilise relatively simple methods to monitor and classify operators' mental workload.  

Study One - BCI for Education  
The development and integration of technologies into teaching practices have begun a trend toward 
transitioning from the more traditional classroom pedagogical models to online models (Alharthi, 
2020; Bergdahl et al., 2020). Research has shown that the use of technological tools in learning helps 
promote engagement and motivation as predictors of success (Bergdahl et al., 2020; Fırat et al., 2018). 
While technological tools in education have been designed with user cognitive load as a design 
consideration (Gerjets et al., 2014; Sweller, 2020) very few of these technologies adapt in real-time, 
potentially making learning less personalised (Kalyuga & Liu, 2015).  

By positing the following research question, "To what extent does utilising a real-time BCI that adapts 
the speed of information provision and response times based on cognitive load improve learning 
outcomes over a task involving learning astronomical constellations?", this study explores two 
interface adaptations (speed of information presentation and response time) with the aim of 
demonstrating that these adaptations can improve learning outcomes. 
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Study Two - BCI For E-Commerce 
With the growth of e-commerce, consumers face choice difficulties due to the many products available 
online (Donkers et al., 2020; Schulz et al., 2019; Wertenbroch et al., 2020).This paradox of choice 
(Schwartz & Schwartz, 2004) leads to increased cognitive load, resulting in hindered decision-making 
and a reduced likelihood of selecting rational and objective options (Besedeš et al., 2015; Deck & 
Jahedi, 2015; Zhang et al., 2014). Thus, predictive recommendation algorithms are deployed within e-
commerce to facilitate decision-making (Smith et al., 2005). However, these algorithms are essentially 
blind to the user's cognitive load and do not dynamically update recommendations. 

To investigate how dynamic recommendations triggered by operator cognitive load may facilitate 
improved decision making, we formulated the following research question: "Can a BCI which measures 
and classifies cognitive workload to adapt information presentation, reduce the cognitive workload of 
online shoppers and facilitate optimal decision-making?". Thus, this study will compare 
recommendations embedded in product comparison matrices, dependent on whether these 
recommendations appear perpetually or activated using a BCI and a classification of high cognitive 
load.  

Methods 

 

Figure 1. The BCI Process and Classification Pipeline 

Utilising EEG technology from g.tec (Guger, 2017) and a custom BCI framework developed in MATLAB 
Simulink (MATLAB, 2010), the process flow (Figure 1.) will be used for both phases of the research 
program, starting with data streaming from the experimental task, which is processed, filtered, subject 
to Fast Fourier Transform. These data are then segmented before being sent to data storage for later 
use and in parallel to calculate the index of cognitive engagement (Pope et al., 1995) to provide a real-
time assessment of cognitive load coupled with a computational classifier (Demazure et al., 2021; 
Karran et al., 2019) which outputs classification via lab streaming layer to drive the interface 
adaptations required for studies one and two. 

In phase two, we will utilise the data from storage to train a variety of more advanced techniques for 
classifying mental workload, such as machine learning using support vector machine(s) and end-to-
end deep learning. An end-to-end process in the context of deep learning for mental workload 
estimation describes a process that takes raw EEG signal data, processes these data, derives 
discriminant features, and then provides a classification of the target state as a complete functional 
solution requiring no manual feature engineering, studies one and two will be repeated using these 
new classification techniques.  
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We look forward to discussing our approach with an emphasis on end-to-end deep learning for EEG 
classification, study progress and interim results. 
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Introduction 
This study is the first step for investigating the possibility of utilizing the passive brain-computer 
interface (pBCI) concept in the interaction between humans and assistive wearable robots. 
Neuroadaptive systems can automatically adapt to specific aspects of their operator’s mindset [1]. This 
capability has great potential to be used in the interaction between assistive wearable robots (e.g., 
exosuits) and users. By widening the communication bottleneck between the robot and the user, 
robot’s assistance could be both enhanced in quality and evaluated more accurately. At this first step, 
we aimed to examine the feasibility of using neuroadaptive technology for this use case. 

Identifying brain activities using EEG measurement devices during locomotion, which occurs in 
assistive scenarios, is a complex and challenging task. Depending on the quality of the measurement 
device, the EEG signals measured during tasks such as walking are heavily contaminated with 
movement artifacts. Although various methods have been proposed to remove the movement 
artifacts from the EEG signals [2], it remains an open research topic. Consequently, to avoid dealing 
with this challenge at this initial step of research, we designed a simple experiment to evaluate the 
idea of using neuroadaptive technology (NAT) [1] to assess human perception of locomotion. This 
experiment is designed to validate the possibility of using NAT for human-robot interaction in legged 
robots which can later be extended to assistive devices. 

The robot model uses EPA actuation technology [3] composed of electric motors and Pneumatic 
Artificial Muscles (PAM). Changing the air pressure of each PAM is considered as the adjustable 
mechanical parameter when the controller is fixed. The same idea will be later used for gait assistance 
while different stiffness of an exosuit will be evaluated by the user in the locomotion task. 

Methods 
A preliminary experiment was conducted as proof of concept. The goal of this experiment was to 
investigate changes in brain signals in the face of different behaviors shown in a video of a simulated 
hopping robot. The robot consists of a single leg that hops in place. Changing the air pressure of each 
PAM would result in a different hopping behavior in terms of the maximum height reached by the 
robot, the frequency of hopping, and the energy consumption of the robot. By varying PAM pressure 
of two actuators of the robot (mimicking human soleus and gastrocnemius muscles), different hopping 
conditions were simulated and used to create the video for this experiment. 

We conducted three different experiments by giving combinations of sensory information (e.g., visual 
feedback, feeling PAM pressures) to three different subjects. Here, we present the simplest 
experimental scenario. One healthy subject (male, 28) participated in this preliminary experiment. The 
subject was asked to sit in front of a screen and watch a 21-minute-long video of a hopping robot, 
while his brain activity was measured. A wireless Emotiv EPOC X with 14 active dry electrodes was used 
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as the measurement device with a sampling rate of 256 Hz. The experiment was first explained to the 
subject, and he was asked to focus on the robot throughout the video. No further instruction was given 
to the participant. 

The video consisted of an animation of the hopping robot. The only information given to the participant 
in the video was the maximum hopping height of the robot, which was demonstrated by a solid black 
line on a color bar next to the robot. Figure 1.a illustrates a representative picture of this video. Three 
conditions (HIGH: 55 cm, MEDIUM: 34 cm, LOW: 22 cm) were simulated with different hopping heights 
by changing the PAM pressures of the model. Each condition is shown for 6.5 minutes in the following 
order: HIGH, LOW, MEDIUM. 

The power spectrum of the three conditions is used for comparison. Processing of the data includes 
band-pass filtering the EEG signals (1-100 Hz), performing Artifact Subspace Reconstruction (ASR) and 
ICA to remove artifacts from the data. All data processing was conducted using EEGLAB v2021.1. 

Results 
After data processing, the power spectrums of all 14 channels were calculated and compared for the 
three conditions. Comparing the power spectrum of electrodes in the region of the anterior cingulate 
cortex (F3, F4, F7, F8, FC5, and FC6) shows a clear difference between the three conditions. More 
specifically, condition 1 with the highest hopping height has lower power in high frequencies, whereas 
the other two conditions (MEDIUM, LOW) show similar patterns. This can be explained by the fact that 
the difference between the highest hopping height and the other two conditions is more noticeable 
than the difference between the hopping heights of conditions LOW and MEDIUM. Figure 1.b shows 
the power spectrum for channels F3 and F4. 

Conclusion 
This preliminary experiment shows a clear difference between different scenarios which could support 
the general idea of using pBCI for identifying human perception of locomotion performance. Further 
investigations are required to find a correlation between movement performance measures and EEG-
based measures. Additional experiments with more subjects are planned. Adding PAMs to the 
subject’s leg during the experiment and presenting more information to the subject (e.g., energy 
consumption) are the next steps. We hypothesize that the human cost function for assessing 
locomotion could be identified using more advanced analyses of NAT, e.g., event-based analysis. 
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Figure 1 -  (a) screenshot of the video shown to the subject during the experiment, (b) power spectrum 
of the two channels located at F3 and F4 for the three conditions 
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Introduction 
Safety and security tasks often rely on operators’ vigilant attention, the ability to focus for a 
prolonged period of time while performing a monotonous cognitive task. Sleep deprivation (SD) 
impairs vigilant attention (Hudson et al., 2020). At the same time, SD is unavoidable in certain 
professions and under certain circumstances. Continuous information about vigilant attention of 
sleep deprived individuals would be helpful to monitor whether they are at risk of lapsing and 
consequently making mistakes. Physiological synchrony may be used for this purpose. Physiological 
synchrony refers to the degree to which physiological measures such as heart rate (HR) or 
electrodermal activity (EDA) uniformly change across individuals. When individuals attend to the 
same events in the world for a few minutes or more, they show physiological synchrony (Stuldreher 
et al., 2020). The degree of physiological synchrony reflects the amount of attentional engagement, 
i.e., the more engaged an individual is with the presented event, the higher the physiological 
synchrony with other individuals. We here investigate whether physiological synchrony as measure 
of attentional engagement can predict decreased performance in a vigilant attention task during SD. 

Methods 
This study was approved by the METC Brabant (approval no. NL74961.028.20). 54 Dutch-speaking 
volunteers (29 female) between 18 to 55 years old (M = 29.4, SD = 11.9) participated.  

Throughout the experiment, participants’ HR and EDA were recorded with a Tickr chest-strap 
(Wahoo Fitness, Atlanta, GA, USA) and EdaMove 4 (Movisens GmbH, Karlsruhe, Germany), 
respectively. As Figure 1a depicts, over the course of a night, participants were presented with a 10-
minute video every hour from 22:00 to 07:00. The movie clips were selected from the Dutch YouTube 
channels NPO3 and KORT! and featured short, moderately emotionally engaging stories. After each 
movie clip, participants performed a 10-minute psychomotor vigilance task (PVT), a vigilant attention 
task in which the participant has to respond as fast as possible to an irregularly occurring stimulus 
(Hudson et al., 2020). Then they filled out the Stanford sleepiness scale (SSS). 

We assessed physiological synchrony across participants during each movie by computing inter-
subject correlations (ISC) in HR and EDA following earlier work (Stuldreher et al., 2020; Pérez et al., 
2021; Madsen et al., 2022). We also computed the lapse probability performance measure for each 
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PVT, following (Hudson et al., 2020). We then used hierarchical linear models to investigate whether 
ISC is predictive of PVT lapse probability. 

Results 
Figure 1b shows traces of PVT lapse probability, and ISC in HR and EDA over the course of the night. 
The PVT lapse probability shows a clear pattern over the course of the night, with an increase of the 
lapse probability up to 04:00 AM, followed by a strong decrease in the early morning. ISC in HR and 
EDA do not show the reverse pattern. Our hierarchical linear models indeed indicated that ISC in HR 
did not significantly contribute to the prediction of PVT lapse probability. However, ISC in EDA 
significantly contributed to the prediction of PVT lapse probability. Follow-up analyses suggest that 
this is mainly due to the association of very high lapse probability with low ISC. Figure 1c gives an 
overview of self-reported sleepiness, HR and EDA over the night. 

  

Figure 1. a. The experimental paradigm consisted of a block with a 10 minute video, a 10 minute PVT 
and the filling out the SSS. b. Traces of PVT lapse probability, and ISC in HR and EDA over the course of 

the night. c. Traces of SSS, and HR and phasic EDA over the course of the night. 

Discussion 
We here aimed to predict performance in a vigilant attention task over the course of a sleep deprived 
night with the use of physiological synchrony. ISC in HR was not predictive of the PVT lapse 
probability, our metric of vigilant attention performance, but ISC in EDA has a modest predictive 
value. Note that our movies were not a monotonous cognitive task that require vigilant attention, 
but were complex stimuli evoking attentional engagement. Participants reported to feel more awake 
during the movie after which they would feel more tired again during the PVT. For future work, we 
therefore suggest not to use engaging movies, but continuous background audio such as a radio 
show. We expect higher predictive value of ISC in such a case. Furthermore, our results showed an 
increase in EDA over the course of a sleep-deprived night, which as far as we are aware, has not been 
shown or examined before. The finding that self-reported sleepiness consistently increased over the 
night while performance showed a profound improvement after 5:00 underscore the notion that 
self-reports are not always reflective of objective performance.    
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Abstract 
In times of worldwide confinements and global crisis, virtual meetings are increasingly an alternative 
to in-person meetings. Within virtual meetings, moments of silence can occur due to several reasons  
like connection issues, several persons starting to speak or none starts to speak (see e.g. [1]). As 
participants in meetings follow the obligation to avoid interaction gaps, silent moments might cause a 
state of anxiety referred to “awkward silence” and lead to unconscious behavior such as laughing or 
being embarrassed [2]–[6]. This so-called state anxiety differs from anxiety disorders and is a short-
term emotional state [7]. According to [8], people tend to feel awkward after a certain duration of 
silence. However, this does not necessarily mean that everyone feels awkward at the same time as 
individual and contextual factors play an important role. Existing approaches to encounter this 
awkward silence have created conversational agents or topic proposals that aim to break the silence 
(see e.g. [9]–[12]). However, recent literature suggests that silence itself is not necessarily bad as it 
helps to increase creative solutions and can ultimately lead to better meeting outcomes [13]. To 
incorporate the idea of embracing the silence, we aim to build an adaptive system that can detect and 
respond to moments of awkward silence by reducing the feeling of state anxiety. In this work-in-
progress paper, we report on a first design prototype and a pre-tested experimental design to create 
silent moments while collecting and analyzing participants’ physiological data.  

For our proposed neuroadaptive system, three stages exist based on the biocybernetics loop: 
Collection of data, state recognition and system adaptation [14]. In stage 1, we continuously monitor 
the user’s electrocardiogram (ECG) and electrodermal activity (EDA) data. These signals were chosen, 
because symptoms associated with state anxiety such as alterations in heart rate (HR), HR variability 
(HRV), as well as sweating and skin conductance response (SCR) can be detected with this data (see 
e.g. [15], [16]). Further, the meetings audio output is collected. In stage 2, we aim to recognize silence 
and state anxiety. The detection of silence, defined as none of the meeting participants is speaking, is 
done via the audio output of the virtual meeting. To recognize state anxiety, the collected ECG and 
EDA signals are filtered, windowed and features for HR and HRV as well as SCR are calculated based 
on similar approaches that aim to detect changes in ultra-short time windows (see e.g. [17], [18]). We 
aim to train a two-class classifier (state anxiety/no state anxiety) on the derived EDA and ECG features 
similar to existing classifiers detecting arousal by using algorithms such as random forest, decision 
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trees, LDA or k-nearest neighbors (see e.g. area of arousal/stress detection [19], [20]). Stage 3 covers 
the adaptation logic and visualization. The designed mechanism works as follows: When the state of 
silence is recognized, the classifier is consulted to identify if state anxiety exists. If so, an adaptation is 
triggered. To retrieve different initial proposals for the adaptation visualization, we followed an 
iterative design approach including two workshops with participants from different disciplinary 
backgrounds. Based on the first workshop, we decided to implement a deep breathing support and 
reviewed existing applications in literature and practice. Deep breathing exercises supporting a slow 
breathe in, hold breath and breathe out rhythm, can embrace the silence in meetings and at the same 
time mitigate state anxiety and anxious feelings (see e.g. [21]). We identified the application 
“headspace” [22] as an inspiration for our deep breathing animation and created different 
visualizations and placement options in a group of three researchers. After the two workshops, we 
voted and chose the design shown in Figure 1.  

 

Figure 1. Adaptive system logic and design prototype 

To ensure that the recognition will be successful, we need to collect data to better understand the 
relationship between silence and the occurrence of state anxiety. We designed an experiment that 
artificially creates silent moments while collecting participants ECG and EDA data using Plux devices in 
a virtual meeting [23], [24]. During the experiment, a trained experimenter asks randomized questions 
taken from the International English Testing System [25] for participants to discuss. The participants 
are instructed to contribute an answer to the questions or comment on other participant’s 
contributions. If no participant contributes to the discussion for more than 20 seconds, the 
experimenter moves on to the next question. Thus, besides natural silence between contributions of 
individual participants, we expect moments of awkward silence to occur. To distinguish between these 
two types of silence, participants are asked to self-report moments of awkward silence during the 
experiment by writing down the time and rating the intensity on a five-point scale (none to severe).  

Results from a first pre-test with six persons (one experimenter, five participants) showed differences 
in the individual reported intensity of awkwardness for each silent pause which provides first evidence 
for our stated difference in individual perceptions of silence. We collected ECG data from three 
participants and EDA data from four participants and are currently analyzing the data. First results hint 
to differences between awkward silence moments and the collected baseline. Still, the collected data 
needs to be further analyzed to ensure that the patterns are actually due to silence-induced state 
anxiety. After having collected enough data, the proposed classifiers will be trained and evaluated. 

In this project, we present work-in-progress on a proposed awkward-silence adaptive virtual meeting 
system. As the evaluation of adaptive systems is manifold [26], several next steps are planned: First, 
targeting the recognition stage, the proposed experiment needs to be conducted on a larger scale and 
a more fine-grained analysis of the collected ECG and EDA data is needed. Second, the proposed 
classifiers need to be trained and evaluated. Finally, targeting the adaptation stage, the selected 
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classifier will be integrated in the prototype to evaluate the users’ perception of the proposed adaptive 
system. We plan to evaluate the system against a baseline non-adaptive system and an alternative 
rule-based adaptation mechanism using the duration of silence as a threshold to trigger the adaptation 
when it is longer than the mean duration to perceive silence as awkward (see e.g. [8]). We aim to 
contribute with design knowledge for system that supports more pleasurable experiences in virtual 
meetings in silent pauses. Besides, we may provide further insights into the design of adaptive video 
meeting systems that support users in emotional situations, for example, when experiencing 
nervousness due to public speaking anxiety. 
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Abstract 
In neurofeedback applications, neural activity is measured and presented to the user in real time to 
help regulating behavior or mental states (Sitaram et al., 2017). In electroencephalography (EEG), 
neurofeedback often makes use of the default-mode network (Raichle et al., 2001), which can be 
measured using the theta (4-8 Hz) and alpha (8-13 Hz) frequency range (Fomina et al., 2015). While 
the efficacy of neurofeedback training in clinical applications such as the treatment of attention deficit 
hyperactivity disorder (ADHD) is often investigated, it is still not clear (Sitaram et al., 2017). One reason 
for the lack of a lasting effect could be the lack of immersion during the training, which might be 
alleviated by embedding it in a gamified scenario. Close-loop applications using the theta-alpha EEG 
frequency range in a passive brain-computer interface (pBCI; Zander, 2011) in games have been 
developed in recent years (Ewing et al., 2016; Krol et al., 2017), paving the way to enabling use cases 
that are closer to consumers. 

In this work, a closed-loop neurofeedback application was implemented in the popular game Skyrim 
VR, a fantasy role-play game in virtual reality (VR), to exemplify the applicability of neurofeedback and 
BCI technology for consumers outside of the clinical context. To this end, the Muse meditation 
headband was used, a low-cost consumer EEG device with 4 dry electrodes that fits under a VR headset 
(see figure 1, left). The data is collected and processed locally in real-time using Brainflow 
(https://brainflow.org). For analyzing the data, the two anterior channels’ theta power as well as the 
two posterior channels’ alpha power values are collected every second. The ratio of this frontal theta 
and posterior alpha power is then z-scored using a 5-minutes moving baseline and subsequently 
modified by the level of motion by the player, as measured by gyroscope activity that is also available 
from the Muse headband. This is to ensure that the low signal strength of the EEG in the mobile context 
is augmented by taking additional body measures into account (Jungnickel et al., 2018). The values are 
then stored in a 10-seconds moving window hysteresis vector where more recent values are weighted 
higher. The weighted mean of this vector is finally taken as the “focus” that is used within the game 
and displayed in real-time using a meter bar (figure 2, right).  

In the gameplay, the focus affects several magical abilities of the player: 1) It scales the regeneration 
of “magicka”, the resource required to cast magical spells. 2) It scales the magical power itself, i.e. 
damage/healing done. 3) If the player attempts to cast a spell with low focus (<30%), damage is applied 
to the player. This modification has attracted significant media attention (e.g. 
https://www.thegamer.com/skyrim-vr-real-virtual-magic-mod-interview), was downloaded >40.000 
times (although mostly by players who did not use it but wanted to show support), and is in active use 
by at least 15 confirmed players who responded to inquiry. Qualitative feedback showed that, as the 
players’ magical abilities depend on their own personal abilities to focus, this modification enhanced 
their immersion and improved their user experience by giving them an experience of magic as though 

https://brainflow.org/
https://www.thegamer.com/skyrim-vr-real-virtual-magic-mod-interview
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it was real. To educate the public and discuss VR-BCI related topics and technological advancements, 
a public community has been established that connects neuroscientists, game developers, hardware 
creators, and interested players and currently has >800 members (https://discord.gg/7MJjQ3f). The 
modification including the source code is available for download at 
https://www.nexusmods.com/skyrimspecialedition/mods/58489. This modification is still under 
development and will allow a use also in other game engines such as Unity or Unreal in the future. 

 

Figure 1, Left: the Muse EEG headband can fit under a VR head-mounted display. Right: In the game, a 
meter is available that shows the measured “focus” (bottom pink bar), which affects magical abilities.  
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Abstract 
In recent years, passive brain-computer interfaces (pBCIs) became one of the most promising tools in 
researchers’ quest for bridging the human mind and machine. It has been repeatedly shown that 
pBCIs can decode mental states without the need of one’s awareness or volition (Fairclough & 
Zander, 2021).  Among other such states, classifying different levels of cognitive workload proved to 
be successful in controlled laboratory contexts as well as some simulated realistic scenarios (Zander 
et al., 2017). However, by an overwhelming majority, the literature on pBCI involves tasks presented 
on a computer screen and performed in a sitting position by participants.  

Meanwhile, real-life applications of pBCI might require a user to stand or switch between postures 
while performing the task. For example, a doctor could perform a surgery while standing, but also 
make use of a pBCI that monitors their level of workload in real-time (Zander et. al, 2017). Postural 
discrepancies might impact brain dynamics by increasing the high-frequency oscillatory activity 
(Thibault et al., 2014) or by inducing muscle activity that alters the electroencephalography (EEG) 
signal (Zhong & Luo, 2021). Hence, it might be premature to generalize laboratory studies’ results to 
application-based contexts, before investigating the impact of postural differences on pBCIs’ 
performance. 

Moreover, in view of growing Virtual Reality (VR) popularity charts, the way we interact with 
technology changes and more pBCI mediums should be explored (Putze et al., 2020). As we progress 
towards a more user-friendly approach to pBCI, we need to make sure our techniques are feasible for 
multiple settings. In this study, we investigate if a pBCI’s ability to classify workload differs based on 
posture (sitting, standing) or presentation modality (computer screen, VR). 

This study investigated if for a given previously tested paradigm (the “sparkles” paradigm) (Zhang, 
Krol & Zander, 2018), there is a significant difference between the BCI system’s ability to detect 
workload in a real environment versus a virtual environment. If not, we would have a first indication 
that the brain signals produced even while wearing a VR headset are readable and useful for a pBCI. 
Moreover, we wanted to see if the user’s posture while recording the brain activity during a 
workload-inducing task has a significant effect on the pBCI’s ability to decode the cognitive state. The 
sparkles paradigm (approximately 8 minutes duration) involves a block of 40 trials in random order 
(20 with high load, 20 with no load).  Each trial lasted 10 seconds, for a total of 200 seconds of EEG 
data per task workload class.  
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During the high workload trials participants were presented with a mathematical task, while in the 
rest trials subjects were instructed to rest. For each of the 22 subjects included in the study, this task 
was presented 4 times in a random fashion: 

1. while sitting, wearing the EEG cap. 

2. while sitting, wearing the EEG cap and VR headset 

3. in standing position, wearing the EEG cap 

4. in standing, wearing the EEG cap and VR headset. 

Our findings suggest that there are no significant differences in the classifier’s performance between 
conditions. As we wanted to see if there is more muscle activity present in the standing position 
conditions, we also analysed the signal variance. 
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Abstract 
Brain-computer interfaces (BCIs) provide an alternative pathway for communication between user and 
computer that does not require manual control of an input device such as a keyboard. Instead, 
intentions of the user are decoded in real-time based on features of recorded brain activity and are 
used to provide commands to external devices. Particularly, so-called sensorimotor BCIs decode 
imaginary movements of hands and/or feet from the spatiotemporal dynamics and power spectral 
density of oscillatory activity in a subject-specific frequency range.  

Rehabilitation after stroke is a promising application of sensorimotor BCIs since imagination of a 
movement requires activation of similar brain areas as compared to the actual execution of the same 
movement (Decety, 1996), thus providing a possibility to induce plasticity in the cortex. However, in 
most cases, several training sessions are required for users to obtain control of the device, and 
performance varies considerably across subjects and between sessions. On average, around 20% of 
individuals (Alkoby et al., 2018) are unable to achieve reasonable levels of control, but the underlying 
mechanisms of unsuccessful learning are not clear yet. 

Several studies have investigated neurophysiological predictors of performance in BCI tasks that can 
be extracted from recorded brain activity. In (Blankertz et al., 2010) signal-to-noise ratio of the 
sensorimotor alpha band activity during resting state recordings correlated with the accuracy of BCI 
control. Apart from that, more complex features such as multiscale temporal dynamics (Samek et al., 
2016) and functional connectivity between sensorimotor areas (Vidaurre et al., 2020) also correlated 
with accuracy after controlling for the signal-to-noise ratio. 
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The latter connectivity-based predictor can be particularly important, as connectivity is a measure that 
quantifies interaction between brain areas, which might play a vital role in the multi-faceted process 
of BCI learning. In the current work, we aim to extend the findings about the relationship between 
connectivity and BCI accuracy and to study the longitudinal changes in connectivity during learning to 
control a BCI using a publicly available dataset. In (Stieger et al., 2021), participants (n = 62) performed 
7 or 11 sessions of a 2-D cursor control task based on the imaginary movements of their left and right 
hand while 60-channel EEG was recorded. 

Following (Vidaurre et al., 2020), we use the absolute value of the imaginary part of coherency as a 
measure of connectivity between sensorimotor cortical areas. To obtain higher spatial specificity, we 
perform the calculation of connectivity in the source space. We first apply inverse modeling to obtain 
an estimate of activity for 4502 sources located in the cortex, and then combine time series of source 
activity to extract one time series per region of interest (ROI) for pre- and post-central gyri of both 
hemispheres. 

There are multiple methods for both inverse modeling and extraction of ROI time series that do not 
have a clear favorite among them. Since the problem of source reconstruction is ill posed, there are 
several solutions with different underlying assumptions, for example, eLORETA (Pasqual-Marqui, 2007) 
and linear constrained minimum variance (LCMV) beamformers (Van Veen et al., 1997). There are also 
several methods for extracting ROI time series, and in the current work, we considered singular value 
decomposition (SVD) with one or three components per ROI and averaging time courses of activity of 
sources in the ROI with sign flip depending on the orientation of the dipole. Thus, we used all 
aforementioned combinations of inverse modeling (eLORETA and LCMV) as well as ROI extraction 
techniques to provide a comprehensive framework for the estimation of connectivity changes in the 
context of BCI learning. 

Since the selection of the pipeline might affect the result, we applied multiverse analysis (Steegen et 
al., 2016) to address the problem of stability of connectivity estimation with respect to the choice of 
methods for inverse modeling and ROI time series extraction. Our preliminary results in general 
confirm a positive correlation between the imaginary part of coherency and BCI accuracy, yet our 
analysis also reveals variability in the results obtained with different pipelines.    
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Introduction 
Sleep has a crucial impact on health and memory consolidation (Rasch and Born 2013). Memory 
consolidation mainly takes place during the slow oscillations (SO) typical of the N3 deep sleep stage. 
SO are characterised by frequencies around 0.8 Hz and high amplitudes. The underlying neuronal 
activity appears to synchronise in an up-and down-phase, reflecting membrane depolarisation and 
hyperpolarisation, respectively (Massimini et al. 2004). Brief acoustic stimulations during the up-
phase of SO showed increased SO amplitudes and improved memory consolidation (Ngo et al. 2013; 
Ong et al. 2016). Ngo and colleagues (2013) demonstrated that if the stimulus is set out of phase, the 
SO activity is disrupted, and memory consolidation is not improved. Sleep EEG data are typically 
derived in a laborious process at a sleep laboratory. High-quality sleep EEG data can be recorded in a 
home environment using unobtrusive, easy-to-apply EEG electrode grids worn around the ear (Da 
Silva Souto et al. 2021). Moreover, a recent development relevant for sleep EEG is the trEEGrid 
sensor, which consists of nine single-use self-adhesive gel electrodes placed around the ear, one eye, 
the forehead, and the chin. Linear combinations of trEEGrid channels can be used to approximate the 
EEG that would be recorded at PSG-relevant scalp positions (Da Silva Souto et al. 2022). Here we 
developed a real-time acoustic SO approach to be used in a home setting with the trEEGrid layout.  

Method 
A closed-loop method detects the up-phase of SO, representing a phase-dependent acoustic 
stimulation. The control circuit is based on three processes: detecting the SO during sleep in real-
time in the EEG, triggering and setting an acoustic pulse during the up-phase to amplify the SO 
amplitude. The acoustic stimuli are pink noise bursts of 50 ms and a level of 55 dB SPL. This algorithm 
identifies a local minimum in the EEG and presents an acoustic stimulus afterwards. Since the 
amplitudes in N3 sleep are higher than in the other sleep stages, this should also ensure a 
N3 classification. This approach is based on a paper by Ngo et al. (2013). The channel combination 
Fpz-M1 identifies the stimulation points. An initial threshold was determined from an already 
collected sleep dataset from 12 participants (Da Silva Souto et al. 2022) and set at -45 microvolts. The 
incoming EEG signal is buffered for five seconds and then bandpass-filtered between 0.25 Hz and 4 Hz 
(phase true Butterworth filter of 4th order). An acoustic stimulus is presented if a sample of the last 
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half period duration exceeds the negative threshold and represents a local minimum. The delay 
between negative peak and acoustic stimulation is adaptive to ensure synchronous stimulation with 
the SO up-phase. Every time the minimum is found, the following maximum is sought. The time 
interval between minimum and maximum is stored. The time delay from minimum to stimulation is 
adapted to one-half of the median of the last ten min-max distances. Every two seconds, the 
threshold under which the minimum must lie is adjusted to the root mean square of the last five 
seconds, provided it is below the initial threshold.  

In an offline evaluation, the signal was divided into sections around the stimuli to evaluate the 
accuracy of the desired phase matches. The negative peak before and the positive peak after the 
stimulus was found. The time between these peaks is the rising slope of the SO. The rising slope was 
divided into four section equal in length, and it was determined in which section the stimuli have 
been set; sections two to four were considered most ideal in terms of stimulus presentation to 
ensure that stimulation is not too early (i.e., close to the minimum) and therefore compromising SO 
activity. To evaluate the developed algorithm a pilot experiment was conducted. One participant 
slept two nights with the at-home system (this data is further referred to as pilot measurement). The 
algorithm operated online and detected the appropriate time points to trigger an acoustic stimulus 
as described above.  To investigate the effect of acoustic stimulation on SO amplitude in only half of 
the instances an acoustic stimulus was actually presented. In the other half, only a marker was sent 
by the system, but no acoustic stimulus was played. 

Results 
Previously collected data from 12 participants were used to test the algorithm (Da Silva Souto et al. 
2022). Of the 12 data sets, the median of setting the stimulus trigger in the targeted phase (i.e., 
sections 2-4) was 83 % (SD = 4.8 %). The pilot measurements suggest that the algorithm also works in 
an online setting. The stimulation was restricted to the first 4 hours of the night when N3 sleep tends 
to be more prominent compared to the second half of the night. The acoustic stimulus was 
presented in the targeted phase in 76.6 % (SD = 6.9 %) of the detected SO. Two measurements (i.e. 
two nights) with the same participant were divided into intervals with and without stimulation. In the 
interval without stimulation the time point for stimulation is marked but no actual stimulus is 
presented. Figure 1 represents the mean (±SEM) of all SO time-locked to the detected negative peak.  

The positive peak amplitudes following the stimulation markers were significantly larger for the 
intervals with acoustic stimulation (red) against those without stimulation (blue).  

Figure 2: SO, time locked to 
negative peaks (0 ms); mean 
(±SEM) of the interval of two 
measurements (i.e. two 
nights) with intervals of 
acoustic stimulation (red) and 
intervals without acoustic 
stimulation (blue). Gray box 
indicates the time interval of 
acoustic stimulation 
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Outlook 
So far, the focus was placed on developing and fine-tuning the algorithm. Up until now only limited 
pilot measurements were conducted. Even though the results are promising it is too early to draw 
definitive conclusions, particularly on the functional level with respect to cognitive effects. The setup 
will continue to be evaluated in healthy participants to determine whether the described approach 
modulates the amplitude of SO and contributes to improving memory consolidation. Each participant 
will be measured for two nights, one with a stim- and one with a sham condition. The stim condition 
places the stimuli during the rising slope of the up-phase, while the sham condition places the stimuli 
in a random phase of the EEG signal. A memory task will be performed in the evening and then 
tested the morning after. 

The here-described approach for an acoustic closed-loop system provides promising results as a basis 
for an easy-to-use at-home system to modulate SO during sleep. This could be of particular interest 
in the context of neurodegenerative diseases.  Papalambros and colleagues (2017) suggested that an 
SO enhancement associated with overnight memory improvement in people with amnestic mild 
cognitive impairment (aMCI) by acoustic stimulation offers a potential intervention approach. 
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Introduction 
There is a trend in human-computer interaction toward the development of systems that can 
improve well-being, such as devices meant to pace users’ breathing or applications that encourage 
users to regulate their physiology through the use of biofeedback (Calvo & Peters, 2014). At the same 
time, settings involving groups of users are more and more studied, with the assumption that 
collaboration motivates participants and encourages positive behavior (Fowler & Christakis, 2009). 

To assess the effectiveness of these interventions, questionnaires such as the STAI (Spielberger et al., 
1983) or physiological markers can be used — e.g. increase in heart-rate variability (HRV) correlates 
with stress relief (Cowley et al., 2016). When dealing with biofeedback applications, the latter might 
be deemed less disruptive because users already wear sensors. Even though the controlled 
environment of a lab is necessary to ensure that participants are properly equipped, it is however far 
from ideal in order to gather ecological measurements. In order to achieve a setup that enables 
sufficient control over the experiment while creating a scenario that more closely mimics real-life 
situations, we propose to take advantage of escape rooms. Indeed, in an escape room (or escape 
game), participants are confronted to a series of tasks and challenges in a fixed environment, all 
during which they are monitored by a “game master” who closely follows their progression, 
triggering events depending on the advance of the team. This represents an ideal situation for 
experimenters, as they can leverage on the apparatus in place to integrate the sought-after 
experiment,  knitting the supplementary hardware and instructions to the existing scenario. 

We were interested in evaluating a tangible breathing guide that doubles as a collaborative 
biofeedback exercise. Our first hypothesis is that an explicit breathing guide is more effective as a 
relaxation exercise, compared to simple instructions. Our second hypothesis is that a biofeedback at 
a group level, where users strive to complete the task together, will improve user engagement. 
Through the escape room, we were able to enroll hundreds of participants in groups of four, whose 
heart rate was recorded during the entire duration of the session, the signal synchronized with the 
events triggered by the game master. The number of participants, an order of magnitude greater 
than traditional experiments in the field, helped to alleviate inter-subject variability and extract 
physiological markers which dynamic significantly changed over time depending on the condition. 

Methods 
Participants were recruited while they were playing a “serious escape room” conceived by the 
company Tricky, a learning tool based on the concept of escape rooms. It was proposed to 
practitioners working in nursing homes to raise awareness about muscle-skeletal disorders, for 
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example when they have to carry patients. The escape room involved groups of four participants. 
They signed a consent form about the study that would occur during the play, and were equipped 
with a smartwatch measuring heart rate (Polar OH1). In the middle of this scenario, which lasts 
around 30 minutes, players must take care of a patient not willing to get out of bed — a situation 
they are often confronted with in real-life. The patient (a mannequin delivering pre-recorded 
messages) suggests to do a breathing exercise to reduce the stress they are feeling around them. The 
task is meant to help participants calm down and solve the issue as a team. In one condition (“no-
device”) players were  given instructions to do deep breaths, with inspirations and expirations of 5 
seconds each. In a second condition (between-subjects) players used a dedicated display (Ullo 
Flower; Hamon et al, 2019). The device was shaped as a flower and was meant to guide players’ 
breathing, its light growing outward during inspiration and shrinking inward during expiration (same 
5s/5s cycle). Additionally, the device’s color would change depending on the overall HRV, measured 
in real time as the mean RMSSD of all participants. The light would turn red on low variability and 
green on high variability, with thresholds defined during pilot studies. If all players were to follow the 
breathing guide they would steer the color toward green, as higher HRV correlates with deep and 
slow breathing. The relaxation session lasted 147 seconds on average. It was extended by game 
masters if participants were deeply involved in the exercise, or terminated early if it was not 
followed. 

560 participants in total were involved in the study, 127 of whom data was incomplete due to 
connectivity issues and removed from subsequent analysis. Consequently, there were 222 
participants kept in the “device” condition and 211 in the “no-device” condition. 

Results and Conclusions 
Significance was tested using permutation statistics (Voeten 2022). During the relaxation session, 
once sessions’ duration were normalized, we observed in the “device” condition a significant 
diminution of heart-rate, as much as 3.8%, and up to 27.8% of increase in HRV, compared to “no-
device” (see Figure). This indicates that the device was more effective as a breathing exercise than 
simple instructions. On our sample there was also a slight and yet significant difference after 
exposure (240s after and onwards), with a reduced heart-rate in the device condition (-0.58 BPM). As 
a proxy for engagement, we used the duration of the relaxation sessions, that lasted on average 130s 
for the “no-device” condition and 161s for the “no-device”. Interestingly, the game masters reported 
that people tended to take the breathing exercise more lightly (e.g. making fun of the situation) 
without the device and would be more focused with. This could be explained by the playful nature of 
the biofeedback, that incited players to concentrate and take part in the exercise. 

 

Evolution of HRV over time across all participants, normalized over the “pre” period. 
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Discussion 
In this work, we used an escape room as a way to investigate the effect of a biofeeback breathing 
guide, with a sample size superior to traditional studies, and in settings that mirror real-life scenarios. 
Preliminary analyses support our hypotheses concerning the effect of a tangible device on stress and 
on user engagement. Further analyses will more closely focus on intra-groups dynamics, using 
synchrony measurements to better understand the effect of such devices when several persons are 
involved. We will also correlate physiological measurements with questionnaires filled before and 
after the experiment, inquiring about participants’ psychological traits and user experience. Future 
studies will consider a third condition where the breathing guide does not provide a biofeedback, in 
order to pin-point the importance of a closed-loop system at a group level. We believe that this 
approach could help to answer long-lasting questions in the field of biofeedback application 
concerning the usefulness of an explicit biofeedback. 
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Automated intelligent systems have been under scrutiny in the past two decades for its possibility to 
give raise to responsibility gaps. These are situations where for different reasons it is hard or even 
impossible to clearly and fairly attribute responsibility to one or more human agents for the behavior 
of an automated system (Matthias, 2004; Santoni de Sio & Mecacci, 2021). Crucially, this depends on 
a number of issues such as unpredictability and opacity of a system’s behavior, and on the fact that 
operational control and human agency are complicated by the difficult interaction with intelligent 
artificial systems (Flemisch et al., 2017). In recent years there has been a substantial agreement 
among scholars that a clear set of normative requirements and criteria should be produced to 
identify whether and to what extent there is “meaningful human control” over intelligent systems, 
especially when deployed in high stakes scenarios (Ekelhof, 2019). The contexts of automated 
warfare, self-driving and surgical robotics have been the strongest drivers of this debate (Ficuciello et 
al., 2019; Horowitz & Scharre, 2015; Mecacci & Santoni de Sio, 2020). Theories of meaningful human 
control (MHC henceforth), as opposed to other accounts of control, do not focus on the amount of 
physical intervention that a human agent can exercise, and how appropriate the system’s reaction is. 
Rather, they often rely on normative requirements that aim to minimize responsibility gaps. This is 
accomplished by demanding certain technical and institutional standards and capacities from both 
intelligent systems and their controllers (Ekelhof, 2019).  

MHC theories are a valuable attempt at addressing responsibility gaps, but they still fail to properly 
account for cases where advanced neurotechnology is deployed to assist human controllers of 
automated systems. In particular, symbiotic passive brain computer interfaces (pBCI henceforth) 
have the capacity to elicit “hidden” intentions, and, moreover, induce their subsequent conscious 
endorsement from their user (Haselager et al., 2021). This capacity, we maintain, generates agency– 
and authenticity–problems that go beyond those that characterize standard human machine 
interaction, those that MHC theories are designed to address (Mecacci & Haselager, 2021).  

Without requiring its user to actively engage in a task, pBCI collects information about them and 
gradually develops a model. The information can in turn be used to aid the user in different ways, 
from decision making to physical action performance. It is highly plausible that such support would 
find application in the context of controlling intelligent systems in complex, time-critical tasks. The 
peculiar characteristic of this technology is its capacity to tap into subconscious mental states of its 
user. Those states, that in absence of the technology may never be identified, are surfaced by the 
technology itself (Krol et al., 2020). This introduces the possibility that, based on those subliminal 
states, decisions and actions are triggered and communicated to the automated system (e.g. an 
UAV).  

A first order of problems here concerns agency, in the sense that a human controller might tend to 
endorse those actions as their own even in the absence of conscious deliberation. This is a relatively  
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known problem that affects many kinds of interactions between humans and intelligent systems (e.g. 
automation overreliance), and depends on the specific conditions under which the sense of agency 
forms in humans. It is further aggravated here by the fact that action surfaced by the pBCI belongs to 
some extent to the human controller, rather than being simply provided by the system. This is 
challenging for any MHC theory that aims to establish a solid base for responsibility attribution, as 
potential candidates of moral reprisal will risk to either over- or understate their role in determining 
a system’s undesired behavior.  

A second order of problems with pBCI concerns authenticity, in the sense that pBCI assisted 
controllers of automated systems can become harder to identify as coherent, unified moral subjects. 
Where the agency issue is about establishing whether and to what extent the human agent–and not 
the automated system–is to be deemed responsible for initiating a certain behaviour of the system, 
the authenticity problem concerns the extent to which a controller’s self is affected by the symbiotic 
nature of their relation with a pBCI. Controllers can be competent, well trained, perfectly aware of 
their moral role, and fully endorse an automated system’s role, thereby satisfying every criterion of 
the most demanding MHC theories, while still deserving reduced moral responsibility in virtue of the 
fact that it is hard to identify their unadulterated, authentic self.  

MHC theories, in their current state, lack the conceptual tools to make sense of fuzziness or 
disruptions in controllers’ agency and authenticity. This is due to the fact that they tend to depict 
controllers as stable and consistently rational moral selves. They largely account for the problems in 
controlling, but less so for the problems in controllers. Neurotechnologies in general, and in 
particular those relevant in the context of control, such as pBCI, highlight how human controllers can 
become complex, co-constructed entities. Agency and authenticity effects should be explicitly 
accounted for in MHC theories, and specific requirements should be formulated to preserve the 
integrity of a controller’s self. Specifically, clarifications of the processes involved in pBCI elicited 
intentions, and their potential subsequent conscious endorsement should be focused upon.  
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Abstract 
Information technologies can make our lives easier and more efficient. Can they also make us more 
moral? In this talk, I explore a new avenue for arguing that they can. Namely, I argue that moral 
technology design should focus on targeting our moral identity in order to make us sustainably more 
moral.  

A common take on the impact of new information and communication technologies (ICTs) emphasizes 
their risk of leading to a moral deskilling in human agents (Vallor 2015). It is clear that ICTs’ impact on 
human moral capacities greatly depends on their design. Accordingly, recent work on moral 
technologies—information technologies designed for the very purpose of improving our moral 
capacity—explores how ICTs should be designed in order to support the task of making us more moral 
(Savulescu & Maslen 2015; Klincewicz 2016; Giubilini & Savulescu 2018; Lara & Deckers 2020). One 
challenge those proposals face is the threat of moral disengagement or deskilling (Bandura 2002), 
along with a loss of autonomy. The recent answer to this threat consists in an almost exclusive focus 
on enhancement of morally relevant cognition or reasoning abilities (e.g., Klincewicz 2016, Giubilini & 
Savulescu 2018, Lara & Deckers 2020, Lara 2021).  

In this talk, I argue for an alternative focus in technological moral enhancement. This argument draws 
on insights from moral psychology and recent technology design. Moral technologies have the aim of 
morally upskilling human agents and making them more morally competent. Drawing on debates 
about moral responsibility, I understand moral competence as the ability to recognize and respond to 
moral considerations (Talbert 2019). This ability is bound to our self-conception as moral agents (see 
e.g. Jones 2003, esp. 188 ff.). In fact, moral psychologists argue that moral identity is the prime 
predictor of moral actions and commitments (Damon & Hart 1992). Importantly, there is evidence that 
priming moral identity has an effect on moral emotions as well as moral behavior (Aquino et al. 2007; 
Aquino et al. 2009).  

These psychological findings indicate that one route towards moral upskilling leads through enhancing 
an individual’s moral identity. The focus on moral identity has several advantages. For one, it promises 
to reconcile debates about whether moral enhancement should target either behavior or reasoning, 
since the concept of moral identity has the potential to unify both (Hardy & Carlo 2011; Walker 2004). 
Second, changes to moral identity promise to lead to a deeper and more sustainable moral change in 
individuals. Focus on moral identity finally accounts for autonomy since a heightened moral sensitivity 
does not amount to mere compliance with any substantially defined moral values, but rather to 
ascribing a greater importance to moral considerations as such. Thus, focus on improving moral 
identity promises a fruitful avenue for the design of moral technologies. 
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Abstract 
A brain-machine interface (BCI) is a device that detects and decodes neural activity in order to effect 
bodily movement or the activity of an external device. Accordingly, BCIs have been described as 
devices that can “translate thought into action.” A speech brain-computer interface (SBCI) is 
designed to restore speech through the decoding and analysis of neural activity associated with 
“covert speech,” and the production of the speaker’s intended words though a speech synthesiser.   

A BCI designed to restore motor control (MBCI) can be described as a device that decodes the 
person’s movement intentions, for example, the intention to reach out an arm. However, it might be 
objected that, strictly speaking, the device decodes motor information, for example, force, limb 
position and movement goals, rather than intentions. In other words, the device decodes sub-
personal rather than personal-level states. The contention that BCIs translate thought into action 
appears much stronger, however, in the case of SBCIs, since a stronger claim can be made that the 
device is decoding neural activity that corresponds to cognitive processing: first, in order for a person 
to successfully communicate, speech has to accurately represent what the person is thinking at that 
time; second, the neural activity underlying covert speech - speech that is imagined but not vocalised 
- overlaps with the neural activity underlying overt speech. 

Progress in BCI technology raises important questions regarding agency, responsibility, personhood, 
and embodiment. In regard to MBCIs and deep-brain stimulation (DBS) there has been discussion as 
to whether BCI-mediated behaviour enhances autonomy or undermines it on the grounds that the 
resultant behaviour may be regarded as “inauthentic.” Moreover, the development of 
neuroprosthetic limbs challenges our notions of physical action and embodiment.  Although in a 
broad sense the function of a SBCI is to restore the loss of movement, as in the case of aphasia or 
locked-in syndrome, SBCIs can more properly be regarded as replacing “ordinary” activity rather than 
restoring it since, if successful, they do not increase movement. Furthermore, since SBCIs detect and 
decode neural activity that is common to both overt and covert speech, and that they enable the 
person to express what they consciously imagine, concerns about authenticity and autonomy appear 
less relevant.  
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SBCIs raise a different but an equally challenging set of issues that pertain to the nature of cognition 
and cognitive function. In particular, and in distinction to MBCIs, SBCIs can be seen to provide an 
instance of extended cognition. Although there are a number of different ways of understanding 
extended cognition (EC), in broad terms EC can be understood as the thesis that certain types of 
cognitive processes can be off-loaded into the world - external (environmental) elements can form 
part of a coupled, cognitive system in conjunction with “brain-bound” neural activity.  For example, 
Clark and Chalmers have argued that dispositional beliefs need not be in the head if the following 
conditions are met: the information stored externally is reliable, automatically endorsed, and easily 
accessible (Clark and Chalmers 1998). Differently, Rowlands has endorsed a version of EC according 
to which an external element can be part of a cognitive process if it is designed to make information 
available for personal-level cognitive processing (Rowlands 2010).  
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Abstract 
Neurofeedback training (NFT) describes a closed-loop paradigm in which a subject is provided with a 
real time evaluation of his/her brain activity. As a learning process, it is designed to help the subject 
learn to apprehend his/her own cognitive states and better modulate them through mental actions. 
Its use for therapeutic purposes has gained a lot of traction in the public sphere in the last decade, but 
conflicting evidence concerning its efficacy has led to a two-pronged effort from the scientific 
community. First, a call for experimental protocols and reports standardization [1], aiming to reduce 
the variability of the results and provide a reliable set of data to describe empirical findings. Second, 
an effort towards a formal description of the neurofeedback loop and the main hypotheses that guide 
the design of our experiments, in order to explain or even predict the effects of such training [2,3]. 

This work intends to contribute to the second effort by proposing a mathematical formalization of the 
mechanisms at play in this complex dyadic dynamical system. 

A typical Neurofeedback experiment aims at having a significant (positive) impact on behavioral 
symptoms (e.g. focusing and learning abilities in children with attention disorder). Therefore, strong 
hypotheses are made about the relationship between a related mental state (e.g. the ongoing covert 
attentional effort) and a neurophysiological marker (e.g. the ratio between theta and beta band power 
as measured with EEG [4]). In addition to such hypotheses made by the experimenter, it is also 
important to account for the subject’s beliefs (e.g., his trust in the feedback), which partly depend 
upon the provided instructions, and will impact her/his expectations and the dynamics of training. 

Our formulation makes those hypotheses explicit, in a quantitative manner, so that one can simulate 
the ensuing closed-loop interaction (Fig. 1.a) whose aim is the self-regulation of the targeted 
neuromarker. As such, it enables us to evaluate the consequences of various approximate or even 
erroneous hypotheses (e.g. targeting an inappropriate physiological marker [4], providing a suboptimal 
feedback,…). 

Our model relies on the Bayesian framework. It enables to instantiate an agent who entertains and 
updates a probabilistic (generative) model of the Neurofeedback environment. This rests on the 
assumption that the agent can only infer its own mental state through sensory feedback and the 
knowledge of its own mental actions aiming at modifying that state. Hence, using Bayesian 
computation, we cast the Neurofeedback training as the active process, for a subject, of inferring 
her/his mental states as well as the environment dynamics despite multiple significant sources of 
uncertainty (Fig 1.b). To simulate this loop and the effect of various sources of uncertainty, we take 
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advantage of the Active Inference framework [5,6], a Bayesian approach to belief updating that 
provides a biologically plausible model of perception, action and learning. The framework proposes an 
account of how independent systems balance out explorative and exploitative behaviour to achieve 
their goals, which is crucial with  NFT paradigms. 

We introduce a generic NFT task and we simulate the evolution of Active-Inference embedded artificial 
agents performing this training with various initial parameters (initial beliefs, motivation, habits, 
feedback quality, etc.). Agents are tasked with learning the reliability of the feedback but also the effect 
of their own actions on the mental states. In a first illustrative example, we show that training efficacy 
drops quickly with feedback quality, but we also find that a perfect feedback signal is not quite enough 
to guarantee training success, even in a very simplified representation. By changing initial agent 
confidence about the feedback as well as prior knowledge about the effect of its actions, we can 
emulate very different learning trajectories. Interestingly, we found that although the feedback may 
be perfect, excessive skepticism about it yields poor performance when facing too much uncertainty 

b. We cast the neurofeedback subject experience as a high uncertainty 
inference problem where he/she tries to figure out the hidden states of the 
world (hidden mental states 𝜃𝜃∗) that caused the feedback observed (𝑜𝑜) 
and the optimal actions to get better results (𝑢𝑢). The subject gets better at 
it by learning the dynamics of the environment (Perception + action). 

c. We simulate the feedback performance of various artificial agents across trials performing neurofeedback training, starting 
with different prior confidence levels regarding feedback reliability. We show that even if the feedback is truly reliable, agents 
with excessive initial skepticism (blue) perform much poorer than those with high/absolute confidence in the feedback. (red) 

Figure 1. Our approach formalizes the various functional components of the neurofeedback loop (a.), relies on Bayesian 
formalism to cast it as an inference problem (b.) and uses Active Inference to simulate the performance of artificial agents 
with varying initial parameters (c.).  

a. Neurofeedback paradigms measure subject 
physiological activity (green) and process it to 
design a feedback (red). The subject tries to make 
sense of the feedback and learn (blue) how to act 
upon it (yellow) to achieve an objective. 
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in the action model (Fig 1.c).  Ongoing work consists in exploring the effects of various endogenous 
(e.g. motivation) and  exogenous (e.g. feedback design) factors onto mental training. 
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Abstract  
The direct coupling of the human mind with an artificial cognitive system - a concept we refer to as 
hybrid mind - is enabled by advanced neurotechnologies that allow for bidirectional interactions 
between the brain and a computer. Here, we introduce a structured taxonomy of neurotechnologies 
that are relevant to establish such hybrid mind. The taxonomy builds on three main dimensionalities:  

1. Level of invasiveness, determining the permanence of interaction between brain and technology 2. 
specificity and adaptivity of neuromodulation, describing the extent to which the influence of 
neuromodulation on neural activity is constrained to a particular brain region or function and 3. Level 
of interaction, describing which functional domains are involved in direct coupling of the human 
mind with an artificial cognitive system. Moreover, we provide a theoretical framework to quantify 
the level of integration between biological and artificial processes that give rise to the notion of a 
hybrid mind.  
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Abstract 
We discuss the application of neuroadaptive Brain Computer Interfaces (BCIs) in the context of 
education and personalized learning, presenting open issues, and future directions that will help us 
make such systems more easily available to the public. 
A BCI is a powerful technology which links a human brain and a technical system by detecting 
patterns in brain activity and translating them into input commands for a dedicated machine. The 
primary use for such technology was to provide a communication system for people unable to use 
functional neuro-muscolar channels (e.g., locked-in or paralyzed patients) (Wolpaw, 2002). In recent 
years, however, BCIs have extended their use to healthy people as well and the classical definition 
changed to reflect this shift, identifying BCIs as technological systems able to replace, restore, 
enhance, supplement, or improve the communication outputs of end users (Wolpaw, 2012). 
 
In the context of adaptive learning systems, developing a closed loop neuroadaptive BCI is desirable 
as it allows the flexible adaptation of the tutoring system based on spontaneously generated brain 
signals that reflect the current mental state of the user (Fairclough, 2021). Such technology could 
detect specific brain states like anxiety, inattention, cognitive workload, mental fatigue or aversive 
emotions, even before they reach the user’s consciousness and trigger behavioural responses that 
are non-conductive to learning. Such BCI would represent an optimal learning condition, defined as a 
‘zone of proximal development’, in which the learning content is neither too difficult nor too easy, 
promoting optimal cognitive load for the learner (Vygotsky, 1978) and a state of flow in which both 
attention and performance are maximized (Csikszenthmihalyi, 1991). The recent pandemic 
highlighted the importance of developing effective learning systems that students can use at home, 
which can supplement the lack of a normal school setting and at the same time provide emotional 
support to the learner. However, the current state of the art of neuroadaptive BCIs for learning does 
not yet live up to these expectations. 
Here we highlight some important issues on improving the wider availability of such systems: 
 

Neurophysiological markers: We need more studies focusing on understanding the interconnections 
and relationships between different coexisting mental states. Fairclough (2009) proposed an 
approach to the selection of neurophysiological measures based on three specific aspects, which 
help clearly define the measure of interest: 

- Diagnostic, ability of the variable to specifically index the target mental state while remaining 
unaffected by related states, 

- Sensitivity, ability of the variable to respond rapidly to changes in the mental state 
- Reliability, consistency of the neurophysiological inference across different individuals and 

environments 
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An approach like this will clarify the specific and shared features of neurophysiological measures, 
allowing the development of BCIs able to detect multiple neurophysiological states at the same time, 
like mental workload, fatigue, attention or boredom. As emotion and learning are closely tied 
together, detecting other coexisting mental states could lead to a better understanding of the user’s 
state, allowing for a precise adaptation of the learning contents. A system able to detect multiple 
mental states could be based on self-paced classifiers, able to recognize multiple mental states 
(Scherer et al., 2008). Concepts from affective computing should be implemented in the BCI 
framework as well to develop an affective adaptive tutoring system, which combines information 
about both the emotional and cognitive state of the user. This would allow the system to respond 
appropriately by adapting the learning content difficulty and at the same time considering the 
emotional state of the learner, like a real teacher would do in a classroom. BCI researchers should 
therefore pair up with educational researchers and tutors to develop tasks that promote efficient 
learning and information retention, instilling curiosity in the learner with well-designed tasks. 
 

Classification: The need to re-calibrate the classifier every single session slows down the practical use 
of such systems both in laboratory and real-life settings. To reduce recalibration, the following 
machine learning techniques could be used: 

- Automatic stop stepwise linear discriminant analysis (asSWLDA), which has been shown to 
classify workload levels in operational environments for up to a month without recalibration 
(Aricò et al., 2015). 

- Adaptive classification approaches to minimize the effects of non-stationarities of the signal. 
For personal use, calibration data may not be available from the end user. However, transfer 
learning, sLDA, Riemannian minimum distance to the mean (RMDM) or random forest 
classifiers can help (Lotte, 2018). 

- New online classification algorithms should be validated, to ensure they are sufficiently 
computationally efficient to be used in real-time situations by reducing calibration times and 
increasing robustness to real-life noise. 
 

To guarantee an equal access to such technology we have to make it practical and easy to use for 
many different kinds of learners, with different technological backgrounds and of different ages. To 
do so we should reduce, or even better, completely eliminate, technical steps that are not ultimately 
central for the learning experience.  
 

Biosensors: The current state of EEG sensors technology is hampering the wider use of BCI systems. 
The best signal quality is obtained with wet electrodes which, however, have the disadvantage of 
impedance drift as the gel dries, long set-up time, and the need to wash the gel away after using the 
system. To counteract this, many commercial dry-electrode products have been developed (like 
Muse and Neurosky), at the expense of signal quality. Some companies proposed high-level but 
expensive systems with dry electrodes (like BrainProducts or g.Tec), but these systems are less 
comfortable and very sensitive to the surrounding noise, which makes them difficult to use in real-
life contexts. Therefore: 

- Affordable, comfortable, high-quality EEG devices should be developed, as this will promote 
the diffusion of affordable BCI systems. Researchers and industries should also strengthen 
their cooperation to develop and test such systems in real life scenarios. 
 

This is another important step that we can’t ignore as what the learner should focus primarily on is 
the enhanced learning opportunity that neuroadaptive BCIs can offer. Since the end goal is to 
improve and facilitate learning, we should avoid all the possible elements of discomfort that may 
accompany the experience.  
 

The points discussed above represent the main issues that slow down the wide use of neuroadaptive 
BCI in real-life settings for educational purposes. By considering and working towards the possible 
solutions proposed, collective efforts from companies and researchers in both BCI and educational 
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fields would substantially advance BCIs as affective adaptive tutoring systems that can be used by 
learners with confidence in the near future. 
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Abstract 
Deep learning techniques are increasingly used in brain science. Their interpretability, however, 
remains a topic of intense ongoing research. Interpretability for EEG is especially challenging, among 
other reasons, due to the absence of knowledge of the ground truth in many EEG decoding tasks. Here 
we used simulated data as a testbed for interpretability methods and transferred the gained insights 
to real movement-related EEG data. We introduce several innovations to improve the interpretability 
of EEG-based brain mapping, including cross-class attributions (CroCA) and attribution-map 
ensembling.  
 
We constructed three simulated EEG prototypes with different informative features:  WHAT - the 
frequency of an EEG oscillation (10-20 Hz vs 30-40 Hz); WHEN - the timing of the feature (early or late); 
WHERE - the location of the feature (right or left). The SNR was scaled for 5 difficulty levels. As real 
data, we used a publicly available EEG dataset (HGD) for a binary classification task (14 subjects, left vs 
right hand movement). We examined 7 widely used network architectures for EEG decoding: Deep4, 
ShallowNet, Deep4ReLu, TCN, TIDNet, EEGResNet and EEGNetv4. All networks were trained for 1000 
epochs. Preprocessing and training procedure was the same as described in Schirrmeister 2017 
(trialwise decoding). 
 
Here, we introduce CroCA for visualization of EEG decoding, in contrast to the conventional in-class 
gradients, introduced by Simonyan et al. for computer vision. We tested the hypothesis that cross-
class gradients may reduce the noise in attribution maps, compared to traditional in-class maps. 
Additionally, we explored the usefulness of ensembling attribution maps across models as well as 
occlusion sensitivity mapping in temporal and frequency domains.  
 
Our findings show that different networks had different preferred prototypes. Deep4, Deep4Relu and 
TIDNet had a preference for the WHEN prototypes, while both EEGResNet and TCN failed to decode 
this case. For all networks most of the gradients were assigned to the appropriate time windows and 
channels. However, we observed a range of undesired effects: 1. Attributions to non-informative 
channels (all networks except TIDNet) and time windows (all networks except TCN), which we refer to 
as spatial and temporal ghosting. 2. Attributions were not the same for equivalently informative time 
windows. 3. “Confusion”: Attribution where/when informative signal was present only in the other 
trials of the same or other classes, not in the trial looked at.  
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Generally, the frequency of all types of errors was reduced in the CroCAs, with the most notable 
exception being temporal ghosting present across all networks and methods. 
 
Next, we investigated whether the CroCA picture was also clearer than the in-class results for real EEG 
data. Time-resolved attribution mapping and occlusion sensitivity analysis showed meaningful spatio-
temporal patterns consistent with the physiological expectations. Variability across networks 
suggested that ensembling over the networks could be helpful. Thus we examined the quality of the 
mean attributions over all networks. The in-class maps showed substantially more background noise 
without any meaningful physiological topographic pattern (Fig. 1.). 
 
 

 
Fig.1. Mean across networks attribution maps for movement-related response in the HGD dataset, for in-class 
attribution (left), and cross-class attribution (middle). Cross-class attributions are more focalized on the bilateral 
sensorimotor hand regions. In-Class results show diffusely increased attributions including peripheral electrodes 
(difference on the right). 
 
Finally, we analyzed the correlation of decoding accuracy vs. gradient magnitudes across the 14 
subjects in HGD. For in-class gradients, there was a highly significant negative correlation (p<0.0001), 
indicating increasing gradient saturation. This effect was greatly reduced and not significant (p>0.4) 
for cross-class gradients. 
 
Popular EEG-optimized deep networks have very different performance profiles for different features 
in simulated data. CroCA as a novel variant of saliency mapping gave a clearer picture both for synthetic 
and real EEG data. Attribution map "ensembling" has a  potential to make EEG saliency maps clearer 
and more robust. Synthetic EEG data is a helpful tool for benchmarking interpretability.  
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Abstract 
Transfer learning and meta-learning offer some of the most promising avenues to unlock the 
scalability of healthcare and consumer technologies driven by biosignal data [1,2,3,4,5]. However, 
these methods cannot handle learning from different heterogeneously collected EEG data sets with 
different channel locations and mental tasks, thus limiting the scale of training data. We organised an 
international competition (BEETL) [6] in NeurIPS 2021 on heterogenous EEG data sets with different 
motor imagery tasks, channel locations and protocols of data collection, which first brought public 
attention to utilising multiple heterogenous EEG data sets to enhance EEG decoding and reduce long 
calibration sessions for new subjects. Key findings were published recently [6] and will be presented 
in the conference. 

With proof of concept that heterogenous EEG data sets from individuals or different data centres 
could be utilised for large-scale machine learning algorithms, biosignal data privacy becomes the next 
concern for data sharing and utilisation. Brainwaves are sensitive data which contain enriched 
private information that could be potentially decoded by algorithms, e.g., images, words, and 
identities. However, there is still limited focus on privacy-preserving techniques for EEG decoding to 
protect the data privacy of individuals or data centres. There were some studies on privacy-
preserving in the machine learning literature [7,8,9], but they are either not suitable for brainwave 
decoding or introducing extra computational consumptions, which disadvantage the training for 
large-scale data. 

We are developing a deep transfer learning technique, namely the Multi-dataset Federated 
Separate-Common-Separate Network (MF-SCSN), which integrates privacy-preserving properties into 
the deep transfer learning architecture design without introducing extra computational steps of data 
encryption. The MF-SCSN uses distributed parameters as both auto-encryption and feature 
extraction processes to reach out to the local data sets so that no external entities have access to the 
raw data.  It has distributed learnable parameters that both personalised EEG data and parameters 
are preserved locally without being uploaded to the central server, while the common neural 
network in the server still learns from the general characteristics of source data sets. The proposed 
method is evaluated on the NeurIPS 2021 BEETL competition BCI task. Preliminary results show that 
the proposed method, with the advantage of integrating both transfer learning and privacy-
preserving properties, outperformed the benchmark CNN in terms of decoding accuracies. Our 
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proposed method shows the potential to utilise larger heterogenous data sets for transfer learning 
while possessing better properties of privacy-preserving across data sets and data centres. 
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Abstract 
Despite advances and research in the area of teleoperation (e.g. (1-3)) over the last decades and the 
development of active exoskeletons that provide force feedback to the human for a transparent and 
intuitive interaction (4), it is still challenging to measure the subjective transparency of a 
teleoperation system. But this information is of high interest to be able to define the sensibility of 
the system and to optimize the interfaces used (5). To address the question of transparency, we 
measure the ability of a teleoperator to distinguish weights in two different conditions: weights 
added to the exoskeleton (“teleoperation OFF”) or to a robot under teleoperation (“teleoperation 
ON”, see Fig. 1a and 1b). In the latter case, weight information was transferred using force feedback 
between two different robot platforms, i.e., RH5 Manus humanoid [6] and Recupera-Reha 
exoskeleton [7]. The implemented teleoperation framework utilizes the force control available in the 
exoskeleton and kinematic control on the humanoid.  The movement intention of the human inside 
the exoskeleton is transferred to the humanoid robot using workspace scaling. On the other hand, 
forces and torques felt by the end-effector of the humanoid are scaled and transferred as additional 
end-effector forces in the exoskeleton’s inverse dynamic model using HyRoDyn [8] to enable force 
feedback. Experiments were performed during a single-arm teleoperation setup without transferring 
movements from the human to the robot but only force feedback from the robot to the human via 
the exoskeleton. Both conditions, i.e., “teleoperation ON” condition (Fig. 1b) and “teleoperation 
OFF“ condition (Fig. 1a) were compared when adding weights either to a basket attached to the 
robots end effector or to the end of the exoskeletons’ hand interface structure. An adaptive 
procedure was used to determine the perception threshold to optimize sampling level.  

14 participants, between 21 and 30 years old and right-handed, took part in this study. Prior to the 
experiments, the minimally perceptible weight during teleoperation was defined at 200g. During 
weight changes the position of the arm of the exoskeleton and of the humanoid were predefined. 
The exoskeleton was under force control and the controlled robot (used in the teleoperation 
condition) was under position control to only transmit forces caused by the weight added to a basked 
that was fixed to the end effector of the robot. To avoid visual and auditory cues the participants 
were blindfolded and wearing noise cancelling headphones. Each experiment starts with an empty 
box. After 30 seconds the start of the experiment is declared. 7 subjects started in teleoperation 
mode and 7 subjects with the non-teleoperation condition. Weights were changed every 10s. 
Weights were removed or added, depending on the participants’ answers according to the weighted 
up-down staircase method (WUDM) by Kearnbach (9). If the participant perceived no gravitational 
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forces, weight was added until it was perceivable. If they perceived weight, it was reduced. In this 
procedure for each trial the size of the increasing steps is weighted according to the last three 
answers of the participant. The weight is decreased one step after each correct response and 
increased three steps after each incorrect one leading to a convergence level of 75%. A total of 20 
trials were carried out per condition.  

 
Figure 3 Experimental setup (a,b) and results (c) 

 
For evaluation, we compared two teleoperation conditions (teleoperation ON and teleoperation OFF, 
see Fig. 1-c1). Further, we also compared two types of errors, which are distinguished according to 
whether errors occurred when the weight is decreased or increased (errors in w.gain and w. loss, see 
Fig. 1-c2). For statistical analysis, we performed Friedman test with two within subjects-factors 
(teleoperation and error type). Dunn’s tests were performed as post-hoc analysis and Bonferroni 
correction was performed for multiple comparisons. We found no significant differences between 
both teleoperation conditions for both correct and erroneous responses [teleoperation ON vs. 
teleoperation OFF: p = n.s., see Fig. 1c-1].  Further, we found high accuracy of weight estimation for 
both teleoperation modes [teleoperation ON in correct responses vs. teleoperation OFF in correct 
responses: p = n.s., see Fig. 1c-2] and no significant differences between both error types [p = n.s., 
see Fig. 1c-2]. 

In summary, we were able to show that our force feedback approach during teleoperation was able 
to transfer weight sensation comparably well as adding weights directly to the exoskeleton the user 
is wearing. In the future, we will conduct further experiments to measure the transfer of forces from 
a teleoperated system to a human via an exoskeleton while the human is teleoperating the robot, 
i.e., while both systems are under force control and the human is moving the robot via the 
exoskeleton. This will be a next step in evaluating the transparency of a teleoperation system. 
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Abstract  
Neuroadaptive technology is heavily reliant on supervised machine learning for the real-time 
classification of psychological states.  This approach generates a classification model that is based on 
a training data of labelled data.  One significant challenge for supervised machine learning in the 
context of neurotechnology concerns the ability of the classification model to generalize to examples 
beyond the training dataset.  This issue is particularly relevant when neuroadaptive technology must 
transition from the laboratory to real-world conditions, or from one population of users to another.   

Interactive Machine Learning (IML) (Amershi et al. 2014; Dudley & Kristensson, 2018) represents a 
potential solution to this problem.  IML describes a way of improving machine learning by allowing 
the human user to play an active role during the training of an algorithm.  This idea is not new but its 
relevance has increased in light of complimentary initiatives to make artificial intelligence explainable 
in human terms (Barredo Arrieta et al. 2020).    

This paper describes an exploration of IML in the context of real-time classification of participant 
responses to movie trailers.  A group of 14 participants watched movie trailers and were asked to 
subjectively indicate their level of interest as high or low. Physiological data (EEG, ECG and SCL) were 
collected as participants viewed the movie trailers and used to predict a binary classification of 
interest via a Support Vector Machine (SVM) algorithm.  The movie trailers were presented to 
participants in sequence of four batches, each containing 7-9 trailers.  After the first batch, 
participants’ subjective ratings were used to train the initial version of the SVM.  During the second 
batch, participants received feedback from the SVM (i.e., high vs. low interest) and were invited to 
agree or disagree.  The labels received from the participants were recorded and used to retrain the 
algorithm prior to presentation of the third batch.  This procedure was repeated for the fourth and 
final batch.  Both mathematical accuracy (F1) and subjective accuracy (the level of agreement 
between system feedback and participants’ self-assessment) were recorded after each retraining of 
the SVM.  Statistical analyses revealed no significant increase in F1 with each subsequent cycle of 
retraining, however there was a significant increase of subjective accuracy.  Correlational analyses 
indicated a higher level of agreement between machine classification and subjective self-assessment 
during the final two cycles of retraining.  

The study raises a question of how we should assess the accuracy of machine learning algorithms for 
implicit assessment of user states using neuroadaptive technology.  It also demonstrates how the 
application of IML led to higher levels of agreement between system accuracy and subjective self-
assessment.  The implications of these findings for the future design of neuroadaptive technology are 
discussed.  
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Figure 1.  Mathematical accuracy (F1) and subjective accuracy of SVM algorithm to assess binary level 

of interest across all three re-builds of the system.   
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Abstract 
Introduction: Deep reinforcement learning (DRL) can be used as a strategy to teach robots (or 
agents) how to independently solve complex tasks [1]. In real-world scenarios the agent, however, 
faces the challenge of sparse extrinsic rewards, also called sparse reward environments. Learning 
autonomously goal-directed behaviour is still very time-consuming or sometimes even impossible. 
Hence, it is appealing to use interactive DRL [2] or more generally learning from human feedback (HF) 
[3], [4]. Our work is mainly inspired by the proposed method of [5] and [6] using error-related brain 
potentials (ErrP) [7], [8]. As detailed in [5], [6], the DRL + HF algorithm consists of three stages: 1) 
calibration of a Brain-Computer Interface (BCI) for the automatic recognition of perceived errors 
(ErrP), 2) estimation of a human feedback (HF) policy (approximation of a fully-connected neural 
network in real-time) based on BCI feedback and 3) learning a final DRL strategy from sparse rewards 
in which the HF policy guides the RL policy.  
Method: We extended the work of [5] and systematically evaluated the practical feasibility of 
different EEG-systems (gel vs. dry) for the ErrP-based BCI calibration in a physical realistic 3-D robot 
simulation environment. For this purpose, we developed a simulation environment in which a 
gripping, navigation, and collision avoidance task needs to be learned by the Frank Emika Panda 7-
DOF robot, following [6], combining PyBullet [12], OpenAI Gym [13] and LSL [14]. In a first study (N = 
16 participants), we aimed to compare the BCI classification performance of a high standard mobile 
gel-based EEG-system (64-channel actiCAP slim system and LiveAmp 64 wearable 24-bit amplifier 
from BrainProducts GmbH) with that of a high standard mobile dry-based EEG-system (CGX Quick-
20r from Cognionics Inc). In all the experiments, participants were instructed to monitor the 
navigation steps of the robot behaviour while trying to reach a target and avoiding self-collision or 
collision with an obstacle. The shortest path (A* search algorithm calculated in each given state) from 
a defined start to the end position (goal) has been defined as the optimal path or the intended 
behaviour of the robot. Participants mentally evaluated whether the robot performed the intended 
behaviour (visually indicated in each state). 500 single robot movements from each of the 
participants were recorded while the robot performed erroneous actions with a fixed probability 
(20%) [8]. While [5] compared the BCI-based DRL + HF algorithm to a sparse reward function (RL 
sparse) and a richer reward function (RL rich), we were primarily interested in the difference 
between an implicitly trained version of a HF policy function compared to an explicitly trained one. 
We, thus, implemented two versions of the DRL + HF algorithm in a second proof-of-concept study 
(N = 5 participants): 1) allowing implicit BCI-based given feedback and 2) allowing explicitly given 
feedback. Based on the findings from the first study, we used the dry-EEG system and EEGNet [9] for 
calibration of the BCI model, while data collection for the calibration (stage 1) was the same as 
explained above. In stage 2, participants were instructed to observe the agent performing random 
actions while trying to reach the goal. For the implicit version, the calibrated BCI classifier was used 
to train in real-time the HF policy (prediction that an action will receive a positive feedback). As a 
comparison, the HF policy was also trained with explicitly given input using the same procedure, but 
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with the difference that the data for the evaluation were not predicted from the EEG but were 
queried directly via a keyboard input. In both versions, a total of 1000 feedback labels per participant 
were collected. To account for possible problem of noisy BCI classification [5], we also simulated 
noisy given explicit feedback, hence, participants trained two HF policy versions (good vs. poor). 
Finally, all HF policies were used for learning in stage 3: the robot agent was trained for the same task 
with a Deep Deterministic Policy Gradient (DDPG) from sparse rewards using the HF Policy as the 
initial policy to improve exploration. As learning progresses, the HF policy was reduced and 
increasingly the learned RL policy was used as the behavioural strategy. For evaluation, the success 
rate weighted by the normalised path length (SPL) [10] was used.  
Results: Study 1: We compared the gel-EEG with 64 and 16 channels and dry-EEG with 20 channels in 
four machine learning algorithms. The algorithms comprised classical feature extraction in 
combination with linear classifiers 1) LDA and 2) SVC, 3) classification based on Riemannian geometry 
(Riemann Classifier) [11] and 4) a convolutional neural network (CNN) based EEGNet classifier [9] for 
the classification of observed optimal (positive) and suboptimal (error) robot behaviour. Model 
performance was evaluated and compared using Monte Carlo simulation (using averaged cross-
validated ROC-AUC). Our results showed that the EEGNet performed best with no statistically 
significant difference between the gel- and dry-based EEG. The number of channels also showed no 
significant difference. On average, the EEGNet architecture achieved a ROC-AUC score of 0.911 (64ch 
gel-EEG), 0.910 (16ch gel-EEG) and 0.836 (dry-EEG). Study 2: As seen in the figure below, all three 
BCI-based versions show that the DRL learning process has been significantly accelerated and a 
better asymptotic learning performance is achieved (compared to sparse rewards). The implicit BCI 
version shows a comparable asymptotic behavior to that achieved by explicitly trained feedback 
(e.g., using 70% acc) in B), showing that with better BCI accuracy the variance of the learning process 
is reduced. Conclusion and Future Work: With the first study, we show that the EEGNet classifier and 
dry-based EEG-system provide a robust and fast method for automatically assessing sub- and optimal 
robot behaviour. Results from study 2 show that the implicit BCI-based version with the dry EEG-
system can significantly accelerate the DRL learning process in a realistic simulation environment 
with a comparable performance even to that achieved by an explicitly trained version. As a next step, 
we plan to verify our results in a larger cohort of subjects and transfer this approach to more 
complex scenarios. For example, in a dual-task scenario to answer additional research questions: Can 
we implicitly detect and classify error-related brain potentials in a dual-task task? How are the 
neuronal processes (and probably classification) dependent on different mental load levels? 

 

Three successfully trained models with BCI (A) and four versions with explicit feedback from two subjects each 
with a good (100%) and poor (70%) version (B). Blue shows the trained model using only sparse rewards. In all 
the experiments, 10 models of 8000 episodes were trained, where solid lines show the mean value estimated 

with bootstrapping and the shaded area the confidence interval.  
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Abstract 
In this paper, we show how recent approaches in convex optimization can be used to improve the 
classification of functional near-infrared spectroscopy (fNIRS) signal data for brain-computer 
interfaces (BCIs). Using the Tufts University fNIRS to Mental Workload (fNIRS2MW) open-access 
dataset, we found that a convex relaxation of single hidden layer neural networks underperforms 
regularized least squares (LS) optimization when the neural network model is individualized, but 
significantly outperforms LS when the model is generalized across all participants’ data. We analyze a 
semi-supervised version of the shallow neural networks for relabeling bad data and show that this 
relabeling further improves the classification accuracy. Furthermore, we visualize the learned models 
and find that they capture distinct and meaningful features, specifically the changing oxygenation 
levels in the left and right hemisphere of the prefrontal cortex. 

Introduction 
In our work creating real-time fNIRS-based BCIs, a core challenge is to use the changes in received 
patterns of near-infrared light (650-900 nm) shone directly onto the brain through the skull to 
classify the intensity of mental workload of the user. Convex optimization is especially relevant for 
BCI problems, since linear processing methods, such as frequency filters, spatial filters, signal 
transformations, and classifiers, are widely used in BCI research (Heger et al., 2014). Previous work 
by Heger et al. has shown that regularized LS optimization can achieve competitive results for solving 
feature extraction, feature selection, and classification for individualized models in fNIRS-based BCIs. 

Since the work by Heger et al., a convex relaxation approach for training shallow neural networks 
with theoretical guarantees has been introduced to solve non-convex training. Work by Tolga Ergen 
and Mert Pilanci shows that the introduced relaxation preserves the location of the global minimum 
for a single neuron which can be extended to multineuron single hidden layer networks, proving that 
a globally optimal solution can be efficiently found via a gradient method (Ergen et al., 2017). 

Methods 
We used the Tufts University fNIRS2MW open-access dataset. The dataset includes fNIRS brain 
activity recordings from 68 participants during a series of controlled n-back experimental tasks 
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designed to induce working memory workloads of varying relative intensity. It also includes fNIRS 
brain activity recordings from 19 participants which are unqualified based off the performance of 
those participants (Huang et al., 2021). 

We show that the problem of predicting fNIRS signal data can be formulated as the following 
optimization problem using shallow neural networks with a single neuron 

minimize
𝑥𝑥

1
2
‖𝑔𝑔(𝐴𝐴𝑥𝑥) − 𝑦𝑦‖22 (1) 

where 𝑔𝑔(⋅) is a nonlinear activation function, 𝐴𝐴 ∈ ℝ𝑛𝑛×𝑑𝑑  is the data matrix, 𝑥𝑥 ∈ ℝ𝑑𝑑  is the parameter 
matrix, and 𝑦𝑦 ∈ ℝ𝑛𝑛 is the observation matrix. 

Work by Tolga Ergen and Mert Pilanci shows that for the ReLU function, i.e., 𝑔𝑔(𝑥𝑥) = max {0, 𝑥𝑥}, in 
order to make the problem convex, we can relax 𝑓𝑓(𝑥𝑥) as follows 

𝑓𝑓𝑟𝑟(𝑥𝑥) = ‖𝑔𝑔(𝐴𝐴𝑥𝑥)‖22 − 2𝑦𝑦𝑇𝑇𝐴𝐴𝑥𝑥 + ‖𝑦𝑦‖22 (2) 

while preserving the location of the global minimum (Ergen et al., 2019). For multineuron single 
hidden layer networks, given enough samples, the true parameters can be achieved since we can 
obtain more equations than the number of parameters (Zhong et al., 2019). 

Results 
We evaluate one four-class task (0-1-2-3) with a window length of 30 seconds using 10-fold cross 
validation to compare the classification results of a convex relaxation of shallow neural networks to 
the classification results of regularized LS (Heger et al., 2014). We found that training individualized 
shallow neural networks resulted in overfitting and performed worse than regularized LS. However, 
training generalized shallow neural networks (generalized over all participants’ data) for feature 
selection and classification performed better than regularized LS, increasing testing accuracy from 
31.90% to 35.40% (chance = 25%). 

Next, we implement and analyze a semi-supervised version of the multineuron single hidden layer 
networks for relabeling bad data, where the classified output of the neural network is used for 
relabeling the data before re-training the network, and compare the classification results of shallow 
neural networks with and without the relabeled data. We found that using semi-supervised learning 
to relabel bad data increased testing accuracy from 35.40% to 36.08%. 

Furthermore, we visualize the learned models and analyze their characteristics. Figure 1 shows the 
learned parameters for a generalized semi-supervised shallow neural network with 10 neurons for 
feature selection. As seen in the figure, each of the 10 neurons learned a pattern that helps 
distinguish between changing oxygenation levels in the left and right hemisphere of the prefrontal 
cortex for the four-class task. 
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Figure 1. Visualization of the weights of each neuron learned by the generalized semi-supervised 
multineuron model. 
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Abstract 
We ran a multimodal study (n=48, 2 hours of tasks per participant) showing that neuroadaptively-
targeted alerts are effective at improving reaction time (RT) on long (approx. 40 minutes and 1 hour 
in 2 different types of tasks), attentionally demanding tasks. In total, we collected almost 90 hours of 
high-quality multi-modal physiological and behavioral data. The study used reinforcement learning 
(RL) for training a neuroadaptive system in real-time per-participant. This led to the RL system 
learning meaningful internal representations within a few hundred trials, such that it learned to 
deliver stimulation feedback with different modalities (sound alerts, light flickers, tactile vibrations) 
through a variety of platforms for delivering feedback including smartphone, experiment laptop and 
a gamepad. We call this type of system a neuroadaptive feedback platform (NFP). We have thereby 
shown that this NFP technical setup and system is in principle adaptable to different usecases and 
settings.  

Local and global alpha band power from electroencephalography (EEG) were used as the main input 
to the reinforcement learning (RL) system, along with a reward signal based on the recent reaction 
times on the experimental tasks. Alongside the EEG, we recorded heart rate variability (HRV), along 
with subjective mood and cognitive state through experience sampling questionnaires, as well as 
speech for tonality-based speech emotion recognition. 

We extended the well-established [1] attention network test for interactions (ANT-I), by bringing in 
tactile and visual alerts along with the acoustic alert and the orienting signals. We call this extended 
version of the task the Attention Network Test for Interactions, Multimodal (ANTI-M). In addition, a 
more real-world simulation-like task, which we call the Luggage Monitoring Task (LMT), was used, 
based on work in [2], which was extended to allow neuroadaptive (and randomised) alerts, 
comparable to the ANTI-M. Finally, the RL-based alerting system extends prior similar research [3, 4]. 

The key novelty of this research project was: 

1) A versatile  neuroadaptive feedback delivery platform connecting real-time measurement, 
real-time learning system and a real-time delivery system in different forms. Having a final 
delivery system in the form of a smartphone, which can receive and act on neuroadaptive 
output triggers is a very general-purpose approach to providing neuroadaptive feedback to 
participants. This opens up multiple real-world usecases where the ubiquitous smartphone 
can intelligently guide human performance and behavior in targeted directions. 

2) We showed that providing tactile feedback through a game controller (a PlayStation 4 
controller) in one of the experimental conditions for half (n=24) of the participants, led to the 
highest effect on improving on-task performance. Tactile alerts delivered via the game 
controller led to an overall decrease in reaction time without significantly increasing error 
trials (which the acoustic alerts tended to do more frequently). This paves the way for 
incorporating neuroadaptive feedback in various settings where gamepad-like controllers are 
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being used, including in gaming, flying, drone control, but also to be applied in adjacent 
settings like cars with steering wheels able to deliver tactile feedback. 
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Introduction 
Brain-computer interfaces (BCIs) use classifiers to detect specific patterns in brain activity, allowing 
them to interpret ongoing activity, both post hoc and in real time [1]. Some classifier types can be 
interpreted neurophysiologically, meaning an inspection of their weight vectors can reveal aspects of 
the underlying brain processes [2]. This makes these classifiers, originally designed for BCI 
experiments, particularly useful for post hoc analyses in traditional neuroscientific studies, effectively 
providing a data-driven method to study effects between conditions—provided that these effects 
can indeed be revealed using the chosen inspection method. Commonly, interpreting classifier 
weights is done by looking at their pattern, i.e. the forward model revealing the projection pattern of 
the brain process isolated by the classifier [2]. It remains a challenge, however, to interpret these 
scalp-level patterns in terms of cortical sources, i.e. the actual regions of the brain where the relevant 
brain activity originated. To that end, we have previously developed a classifier visualisation 
technique that combines these forward models with a blind source separation decomposition [3]. In 
its current iteration, this method returns a visual representation of the relevance of sources to the 
classifier. Here, this method was applied to a modified implicit cursor control paradigm. It allowed 
the separation of two different cognitive processes, and revealed a serial dependency in the 
experimental design hidden to any other analysis. 

Implicit cursor control 
Implicit cursor control here refers to an experimental paradigm, first shown in 2014 [4,5]. In it, the 
participants observe a cursor move on a computer screen, and, unbeknownst to them, a passive BCI 
interprets their implicit brain activity in response to individual cursor movements in order to guide 
the cursor towards a target. The target was originally given, but can be self-chosen as well [6]. Cursor 
movements were interpreted by the participant as either “good” or “bad” with respect to reaching 
this target. The classifier could detect this interpretation with roughly 70% accuracy, and use it to 
guide the cursor in the “good” direction, i.e., towards the target. A potential confound in the original 
design of this experiment was that the target was visually salient on the screen, and “good” 
movements were thus always “towards” a salient point, whereas “bad” movements were “away” 
from the salient point. It is thus possible that cognitive processes related to visual salience 
(towards/away) overlapped with the main processes of interest related to valence (good/bad).  
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Methods 
This current experiment uses a modified experimental paradigm in which the two processes of 
salience and valence are separated. This is done by placing the visually salient target in the middle of 
a semi-circular grid and having two conditions in which participants are told to either interpret 1) 
“towards” the target as “good” and “away” as “bad”, or 2) vice versa. We could thus isolate valence 
from salience by looking at cursor movements that went in the same direction but had different 
interpretations, and isolate salience from valence by looking at cursor movements in different 
directions that had the same interpretation. We used the same windowed-means paradigm as in [5] 
to implement the classifier, and applied the classifier visualisation method of [3] to interpret it. 

Results and conclusion 
Results are shown in Figure 1. A classifier calibrated to isolate valence (top) shows different source 
contributions than a classifier isolating salience (middle). The salience classifier sees more 
contributions from occipitoparietal sources whereas the valence classifier is focused more on medial-
prefrontal sources. This is in line with expectations. Importantly, however, significant differences 
were also found in the contributed sources between participants who performed one, or the other 
condition first. The lower row in Figure 1 shows the sources, similar for both valence and salience 
classifiers, for participants who first interpreted “towards” as “bad”. This surprising finding of serial 
dependency in the study design was revealed only by the classifier visualisation method; other 
measures, e.g. reaction times and event-related potentials, did not produce significant differences. 

To conclude, a visual inspection of different classifiers reveals that both valence and visual salience 
can play a role in implicit cursor control. The fact that it is possible to create a valence-focused 
classifier has potentially wide-ranging implications for human-computer interaction, but has an 
important ethical component as well, as the subjective interpretation of what is “good” and “bad” 
can potentially reveal highly sensitive information. Finally, in this experiment, the classifier 
visualisation method uniquely identified a serial dependency in the data not seen by other analyses. 

 

Figure 1. Classifier visualisation results. 
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Abstract 
Deep Neural Networks (DNNs) recently found their way into cognitive neuroscience serving as 
powerful computational models. However, the complexity of deep learning models results in an 
uninterpretable black box, preventing neurophysiological insight into processes behind the decision 
of the model. 
 
In this work, we present an explanation approach for a DNN in spatial auditory attention detection 
(AAD) with electroencephalography (EEG), based on Layer-Wise Relevance Propagation (LRP)1. LRP 
decomposes the prediction of the DNN into relevance heatmaps that represent the importance of 
the spectro-spatial image features regarding the decision of the network, illustrated in Figure 1. To 
validate the LRP explanation for the DNN, (1) the relation between relevance heatmaps and the 
output of the network is examined via relevance-guided input perturbation. Further, (2) structural 
features and potential prediction strategies in the LRP heatmaps are investigated by spectral 
clustering of relevance heatmaps. 
 
The results indicate that explanation heatmaps generated by LRP highlight areas in the cortical 
activation images that predominantly impact the decision of the network. The clustering approach 
found distinct patterns in relevance maps, individually for each subject, revealing the importance of 
neuro-physiologically plausible frontal, lateral, and rear brain areas for auditory attention. 
This work demonstrates that LRP can fill the interpretability gap in the development of DNNs for EEG-
based AAD. The relevance heatmaps of single input samples combined with the knowledge of global 
prediction strategies open up the ability to investigate sample groups of interest at will, which 
renders LRP as a tool to reveal potential neural- or decisional processes underlying the deep learning 
model. 
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Figure 1: Pipeline for classification and interpretation of auditory attention with EEG: 1) Preprocessing 
of EEG-data to obtain 1-second decision windows as spectro-spatial image features (top of image: 
frontal brain area). 2) Convolutional Neural Network for the prediction of spatially left or right 
auditory attention. 3) Schematic visualization of the layer-wise decomposition procedure as defined 
by LRP. The resulting heatmaps for each decision window indicate relevant pixels for the classification 
result in red. 4) Spectral clustering of relevance heatmaps reveals three structural decision patterns 
for participant 1 and class left. 
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Abstract 
Due to abundant signal and user variability among others, BCIs remain difficult to control. To 
increase performance, adaptive methods are a necessary means to deal with such a vast spectrum of 
variable data. Typically, adaptive methods deal with the signal or classification corrections (adaptive 
spatial filters [1], co-adaptive calibration [2], adaptive classifiers [3]). As such, they do not necessarily 
account for the implicit alterations they perform on the feedback (in real-time), and in turn, on the 
user, creating yet another potential source of unpredictable variability. Namely, certain user’s 
personality traits and states have shown to correlate with BCI performance, while feedback can 
impact user states [4]. For instance, altered (biased) feedback was distorting the participants’ 
perception over their performance, influencing their feeling of control, and online performance [5]. 
Thus, one can assume that through feedback we might implicitly guide the user towards a desired 
state beneficial for BCI performance. An adaptive, Active (Bayesian) Inference model was proposed 
as a way to develop entirely adaptive BCI as it can include different dynamics of signal and user 
variabilities by relying on user and task models [6]. In a simple case (one level of adaptation), by 
inferring dynamic user reactions to feedback, it can adapt the feedback in order to maximise 
performance. However, Active Inference demands explicit conceptions of user and task models 
specific to each case, and its current implementation seems to necessitate  high computational 
power, making it sub-optimal for real-time BCI. 

If we wish to maximise performance by influencing the user through dynamic feedback while 
accounting for user’s reactions, we could achieve that with a simple probabilistic, adaptive model, as 
follows. Given a finite number of possible feedback or actions a =1,2..n , a(r) per run r=1,..m, each 
action creates a corresponding user’s reaction or observation oa(r) ∈ 𝑅𝑅 as online performance. Next 
to the observations and actions, the model primarily contains: (i) the priors about the user ka which 
are static but different for each action; (ii) the confidence about priors 𝛼𝛼 which is a constant value 
(same for each action), and (iii) an exploration/exploitation parameter w(r) that is a function of time 
but is the same for each action. The priors, if available, prescribe the best first action for a specific 
user type (e.g., a certain feedback for a certain personality trait). Otherwise they prescribe equal 
probabilities to each first action ka = p(1

𝑛𝑛
). After every new run r, the model keeps the observation 

(online performance) from the previous run and each time calculates the new weighted average per 
action 𝜇𝜇a(r), with given parameters: 𝜇𝜇a(r) = w(r)𝜇𝜇a(oa(r-1)) + 𝛼𝛼ka . The model transforms the new mean 
vector of actions: 𝜇𝜇(r) = a(r)] = [𝜇𝜇1(r), 𝜇𝜇2(r).., 𝜇𝜇n(r)] into probabilities using a softmax function 𝜎𝜎(𝜇𝜇(r)); 
resulting as a vector of probabilities to select one of n future actions: [P(a(r+1))] = P (𝜎𝜎 (𝜇𝜇(r))). Thus, 
this model is not deterministic, which leaves a slight chance for the least probable action to be 
chosen, thus enabling exploration. 
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We tested our adaptive model offline on real data from 30 participants from [5]. In that study, 
participants were separated into 3 groups, each receiving one out of three possible feedback 
(actions) as: positive bias, negative bias, and no bias. Authors also collected personality traits, states 
and calibration performance of participants, and divided the participants into high and low scores 
depending on whether their scores were above or below the median value. As no participant 
received all 3 actions, to be able to test our adaptive model, we simulated virtual participants as 
follows. One virtual participant contained data from 3 actual participants (one from each group) such 
that all 3 of them shared at least 2 personality traits or calibration performance. For instance, if 3 
participants had high scores on anxiety and low scores on calibration performance, then they would 
create one virtual participant. This way we expect to minimise the individual differences and 
homogenise the reactions to feedback, simulating a real participant. We managed to create 48 
virtual participants. As the experiment in [5] was performed over two sessions, then the average 
online performance (observations per run per action) from the first session served to train our 
model’s priors as training data. On the other hand, we randomly picked average online performance 
from the runs of the second session, to serve as testing data. The priors prescribe the best action 
(here, a bias type) for a specific user (given personality trait or calibration performance scores). Thus, 
priors are calculated as the normalized mean of training data per action of all real participants who 
share one trait. That is, if one virtual participant pairs low anxiety and high extroversion, we would 
first calculate the average of training data for each trait separately and then average them together 
to fit our virtual user. As result, our prior is different for each action, which enables one specific first 
action (bias) to be chosen for a user type. 

As depicted in Figure 1, for 48 virtual users and 20 repetitions, we compare the following models: (i) 
Adaptive model without priors – called ModelAdaptive, (ii) Adaptive model with wrong priors, i.e., 
prescribing the worst first actions for each virtual user – ModelAdaptive+AntiPriors, (iii) Adaptive 
model with correct priors – ModelAdaptive+Priors, (iv) Static model performing always positive bias – 
ModelFixed_positive, (v) Static model performing always negative bias – ModelFixed_negative, (vi) 
Static model performing always realistic feedback – ModelFixed_nobias, (vii) Static model with priors 
for all participants – ModelPriors, (viii) Static model with wrong priors for all – ModelAntiPriors, (ix) 
Model performing completely random action without priors – ModelRandom. 

1-way ANOVA (independent variable: model, dependent variable: performance) with FDR correction 
showed significant increase of performance (p<0.05) of the ModelAdaptive+Priors when compared 
to all other models.  

We are aware that this method has 2 flaws. First, the virtual users are not real, and second, the 
observations i.e., reactions to feedback are not consecutive but randomly picked from the testing 
dataset. However, those are common drawbacks of most offline methods. This adaptive model 
promises great potential as it is intuitive, simple to implement, fairly flexible and resilient to wrong 
priors. In the future, we plan to test this model online. 
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Fig.1. Evolution of models over 40 runs for 48 virtual participants and 20 repetitions, for online 
performance. We can observe that the adaptive model with priors reaches the highest performance, 
and that naturally the static model with wrong priors performs the worst. 
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Abstract 
Neuromodulation is a technique that applies interventions such as electrical stimulation to alter neural 
activities. The control of neuromodulation relies on observable neurological feedbacks such as EEG to 
determine appropriate interventions. However, the dynamics of neurological systems are not yet well-
understood, and their corresponding observable feedbacks are difficult to interpret. This poses 
challenges in hand-crafting the closed-loop intervention policies. Reinforcement Learning (RL) is a 
promising approach that can learn the policies without interpretable observations. Recently, RL has 
been applied to adaptively control biological neural network stimulation [1], deep brain stimulation 
[2,3], and neuromuscular stimulation [4]. However, RL typically works on fully observable systems 
while the actual states of the neurological system may just be partially observed through the feedback 
signals. This partial observation can cause perceptual aliasing problems [5] in which the same 
observations are produced from the different internal states of the systems. These aliasing problems 
can lead to wrong intervention decisions as well as the failure of RL to learn the policies. Solving these 
aliasing problems is a stepstone to harnessing the full potential of RL in Neuromodulation applications. 
Here, we approach the aliasing problem through state-space modelling in which observations are the 
partial and noisy parts of internal states. We want to infer the internal states or create their 
representation and use them in place of the observations to prevent the aliasing problem. We presume 
that the internal states can be inferred through the history of observations and create a method based 
on Gaussian State Space Model (GSSM) which combines recurrent neural network (RNN) with state-
space modelling [6,7,8].  

To concretely state the problem, we aim to learn the state representation 𝑥𝑥 whose transition function, 
parameterized by 𝜃𝜃, 𝑝𝑝𝜃𝜃(𝑥𝑥𝑡𝑡+1|𝑥𝑥𝑡𝑡) is Markovian. The trajectory 𝑥𝑥 is generated by an RNN, parameterized 
by 𝜑𝜑, based on the history of observations 𝑦𝑦1:𝑡𝑡, expressed as 𝑞𝑞𝜑𝜑(𝑥𝑥𝑡𝑡|𝑦𝑦1:𝑡𝑡). In the training, both 𝜃𝜃 𝑎𝑎𝑎𝑎𝑎𝑎 𝜑𝜑 
are updated such that the transition function produces the internal state trajectories that match those 
generated from the observation data. After the training, the RNN 𝑞𝑞𝜑𝜑 can be used to generate the state 
representation 𝑥𝑥 in an online fashion; this can be view as an adaptive online filtering. 

As a demonstration and experimentation, we apply this method to a simulation system of 
neuromuscular stimulation. This system has a human arm with the stimulation applied to the biceps 

muscle to lift the arm against gravity. The internal state comprises �𝜃𝜃𝑡𝑡 , �̇�𝜃𝑡𝑡 ,𝑓𝑓, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. �𝑇𝑇, where 𝑓𝑓 is muscle 
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fatigue that causes the decline of muscle force production given a certain level of stimulation. This 
setup has an aliasing problem because 𝑓𝑓 is not observed. Without knowing 𝑓𝑓, the next state 

�𝜃𝜃𝑡𝑡+1, �̇�𝜃𝑡𝑡+1�
𝑇𝑇

is difficult to precisely predict as illustrated by the red error bars in Fig.1b which is the 
result of fitting Gaussian Process (GP) to observation data. The prediction uncertainty greatly reduces, 
and the prediction accuracy greatly increases (Fig.1b, blue error bars) in the case of the state-space 
approach. This result shows that our method can distinguish the aliasing observations, leading to a 
more precise prediction of the results of the stimulation or the intervention. This proof-of-concept 
experiment suggests that our method could be used to infer the internal states of, for example, the 
brain activity, which is partially observed through EEG or ECoG recording, leading to better decoding 
or brain-computer interfacing. 

 

Fig.1 (a) A neuromuscular stimulation system of human arm. (b) The system’s next states given the 
stimulation intensities. The dots in the upper and lower rows show the true responses when the fatigue 
levels are low and high, respectively. The error bars show the standard deviations of the predictions. 
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Introduction 
Over the past decade, more and more brain-computer interface (BCI) data such as 
electroencephalogram (EEG) have been opened to the BCI field. This trend probably facilitates the 
research to overcome various problems existing in BCIs and move BCI technology forward. However, 
there is still a big hurdle in reusing the shared data. Basically, data have different characteristics due 
to different paradigms, subjects, equipment, and experimental environments. This limits applying one 
data to another experiment or BCI application. For example, one model constructed by a dataset may 
not fit to classify trials in a different experimental setting, consequently causing poor performance in 
the system. To solve this problem, researchers have designed and attempted various algorithms 
including deep learning [1]–[3]. But those methods require intensive or complex computing. As known, 
the key point of P300 BCI is discriminating the intended object from the unintended. The main feature 
of this discrimination is based on the fact that the amplitude of the event-related potentials (ERP) of 
the target stimulus is higher than the amplitude of non-target ERP. Unfortunately, the pattern of ERPs 
may vary across datasets. For example, the amplitude scale and the phase of ERP could be different 
and consequently causing the shift of the distribution of features that do not fit the classification 
hyperplane constructed from another dataset. In this study, we propose a simple signal alignment 
approach for overcoming the signal differences among datasets of P300 BCIs possibly with different 
experimental settings. 

Method 
Given source data 𝑆𝑆 and target data 𝑇𝑇 consisting of ERPs of intended stimulus, the data 𝑇𝑇𝑖𝑖 of 𝑠𝑠th subject 
in target data can be aligned into the standard ERP < 𝑆𝑆𝑗𝑗 > in source data by a linear transformation as 
�̂�𝑆𝑖𝑖 = 𝛼𝛼𝑖𝑖{𝑇𝑇𝑖𝑖 ,𝛽𝛽𝑖𝑖}  using two parameters; scale (𝛼𝛼𝑖𝑖) and delay (𝛽𝛽𝑖𝑖). The symbol 𝑆𝑆𝑗𝑗 is the ERP of 𝑗𝑗th subject 
in target data, {𝑇𝑇,𝛽𝛽} denotes delaying the T signal by the points 𝛽𝛽, and <∙> denotes the average across 
subjects. The optimal 𝛼𝛼𝑖𝑖 can be found from the ratio between the standard deviations of two ERPs as 
𝛼𝛼𝑖𝑖 = 𝜎𝜎(< 𝑆𝑆𝑗𝑗 >)/𝜎𝜎(𝑇𝑇𝑖𝑖) and 𝛽𝛽𝑖𝑖 can be easily calculated by checking the shift showing the highest 
normalized cross-correlation coefficient between two ERPs. For example, the xcorr() function in 
MATLAB can be used like 𝛽𝛽𝑖𝑖 = 𝑥𝑥𝑥𝑥𝑜𝑜𝑥𝑥𝑥𝑥(< 𝑆𝑆𝑗𝑗 >,𝑇𝑇𝑖𝑖 , ′𝑎𝑎𝑜𝑜𝑥𝑥𝑠𝑠𝑎𝑎𝑛𝑛𝑠𝑠𝑛𝑛𝑛𝑛𝑎𝑎′). 

The actual application of this method is illustrated in the left side of Fig.1. For evaluation, we employed 
P300 BCI datasets. Basically, the two P300 datasets were recorded from different subjects, devices, 
and application environments (e.g., User Interface). 

The first EEG data [4] (Biosemi data) was obtained from the P300 BCI speller experiment with 55 
healthy participants using Biosemi Active2 (Biosemi Inc., 32 channels and 512Hz sampling rates). 
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Subjects watched each letter of “BRAIN” and “POWER” sequentially, and the experiment was 
implemented by the default P300 BCI speller in BCI2000 software. This dataset was used as source 
data. 

The second data [5] (DSI data) was recorded during playing the P300 BCI application controlling a flying 
drone from 20 healthy participants. DSI-VR300 (Wearable sensing Inc., 7 dry electrodes: Fz, Pz, Oz, P3, 
P4, PO7, and PO8, and 300Hz sampling rates) was used for signal acquisition. In the task of the 
experiment, subjects watched one of seven buttons marked with arrows indicating ‘forward’, ‘up’, 
‘down’, ‘right’, ‘turn right’, ‘left’, and ‘turn left’ to control the drone. The overall experiment was 
implemented in OpenViBE software. This dataset was evaluated as target data. 

Both datasets were preprocessed in the following order. First, all data were re-referenced (Common 
Average Reference) and band-pass filtered (0.5Hz to 30Hz). Second, epochs were extracted from 
200ms to 600ms after the onset of each stimuli blinking, and the baseline was corrected using the 
average of the data from -200ms to 200ms. Finally, the data were down-sampled to 128Hz sampling 
rates to reduce the dimension of the data. Three classifier models were generated. First (without 
alignment) and second (with alignment) models were constructed using source data (Biosemi data). 
But the third model was constructed from the subject’s own data as a conventional approach for 
comparison. EEGNet [6] was employed for the classifier model in this study. These models were tested 
to classy target data (DSI data). 

Result 
The accuracy result is shown in the right side of Fig. 1. The mean accuracies of the three models are 
80.3% (without alignment), 85.1% (with alignment), and 85.6% (conventional). In the right panel of Fig. 
1b, the f-score is shown. The three models show 77.7% (without alignment), 79.2% (with alignment) 
and 79.7% (conventional). A statistical test revealed no significant differences between ‘with 
alignment’ and ‘conventional approach. 

 

Figure 1. (Left) Workflows of proposed ERP alignment method. ERP of each subject in target data (DSI) is aligned into the 
template ERP of source data (Biosemi) using scale and delay parameters. (Right) Performance of EEGNet. Three models’ 
(without align, with align, and conventional model) results are illustrated.  

Conclusion 
In this study, we proposed a simple signal alignment method for P300 BCIs. The results demonstrated 
that the proposed method shows comparable performance to the conventional approach that a model 
is generated from the subject’s own data. We believe that the proposed method can be used for 
reducing the calibration time in P300 BCIs and also establishing effective transfer learning across 
different datasets. 
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Abstract  
Previous work on neuroadaptive gaming systems has utilised measures of functional connectivity in 
order to classify players’ response to game demand.  This work seeks to extend this analysis by 
applying Granger analyses to the dorsal and ventral attention networks (DAN & VAN) (Corbetta et al., 
2008).  It has been argued that cognitive demand distracts attention from painful stimuli via topdown 
reinforcement of task goals (DAN), whereas pain exerts an interruptive effect on performance via 
bottom-up pathways (VAN) (Torta et al, 2017).  The current study explores this explanatory 
framework by combining functional near-infrared spectroscopy (fNIRS) with Granger causal 
connectivity analyses (GCCA) (Seth, 2010) while manipulating pain and task demand.  21 participants 
played a racing game at low and high difficulty levels with or without experimental pain (cold pressor 
test).  Six channels of fNIRS were collected from bilateral frontal eye fields and intraparietal sulci 
(DAN) with right-lateralised channels at the inferior frontal gyrus and temporoparietal junction 
(VAN).  Our first analysis revealed increased G-causality from bottom-up pathways (VAN) during the 
cold pressor test in isolation.  However, an equivalent experience of experimental pain during 
gameplay increased G-causality in top-down (DAN) pathways with the left intraparietal sulcus serving 
a hub of connectivity.  High game difficulty increased G-causality via top-down pathways and 
implicated the right inferior frontal gyrus as an interhemispheric hub.  Our results are discussed with 
reference to existing models of both attention networks and potential for neuroadaptive technology.  
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Figure 4.  Chord diagram illustrating main effect of Game Difficulty as a main effect (a) and as an 
interaction (b) when participants also experienced the CPT.  Positive values = higher G-causality due 
to high difficulty compared to low difficulty game.  The origin of the pathway is represented by the 
lower half of the circle with destination provided in top half.  Origin nodes illustrated in green  
indicate significant effect in the ANOVA model (see Table 4).    
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Abstract 
Research on neurotechnology has been recently expanded to the realm of robotic augmentation. In 
particular, augmentation by wearing supernumerary (i.e. additional to the natural number of) robotic 
limbs has been the focus of neuroscientific research regarding human capability for controlling these 
devices. Specifically, supernumerary robotics fingers working in collaboration with natural fingers are 
a relevant testbed to study neurocognitive phenomena. Within this context, the choice of an interface 
modality to control augmentative devices has effects in their embodiment and in the motor learning 
process behind controlling them successfully [1-3]. 

One of the most common interfacing approaches to control supernumerary robotic limbs is 
substitution control, in which the extra limb is controlled by the kinematic output originally intended 
for other body parts. For instance, in our previous study, participants were trained to use an additional 
robotic finger attached to the side of the right hand and controlled by foot movements [4]. Moreover, 
they learned to use it in a piano playing task in under 30 minutes, which showcases human capability 
to quickly integrate augmentation devices in real-world tasks [4]. Crucially, it was also demonstrated 
that participants with better foot coordination skills also performed better in piano playing with the 
foot-controlled SRF [4]. This supports the idea that motor coordination metrics, in particular the ones 
related to the control interface, are predictive of success in robotic augmentation [4]. This can have 
implications for other types of interfaces with higher cognitive demands such as the ones based on 
neurophysiological signals decoding, in which subjects could benefit from tailored training in the 
modulation of these signals. 

Substitution interfaces are an effective approach for short-latency real-time control. However, 
because essentially the degrees of freedom of one body part are transferred to the SRL, this strategy 
could be deemed as not being “true augmentation”, which instead implies simultaneous volitional 
control of natural and artificial limbs without hindering the control of the formers [5]. However, in 
able-bodied people, neural motor commands on the efferent pathways are already tasked with 
controlling all muscles. Hence, there is a shortage of signals available to voluntarily control 
augmentative devices without compromising the control of the biological body [6].  

There have been some meaningful steps towards understanding the mechanisms for successful 
augmentation beyond natural motor constraints. Recent advances in non-invasive recording of 
individual motoneurons activity have facilitated the study of the human potential for controlling a 
subset of these signals independently from the motor unit pool that determines muscle force [7,8]. If 
attained, flexible control of spinal motor neurons will lead to the increase in the number of 
independently controlled neurophysiological signals available (neural output) required for true human 
augmentation. 
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Introduction 
Sleep deprivation is unavoidable in certain professions but negatively affects well-being, health and 
performance. We are interested in the relation between sleep deprivation and cognitive 
performance. While sleep deprivation decreases cognitive performance in general, it does so at very 
different degrees between individuals. As of yet, we cannot predict decreased performance due to 
sleep deprivation, and we do not understand what causes this decrease. If we better understand the 
reasons, we may predict (momentary) resilience of individuals to sleep deprivation and develop 
(personalized) counter measures against the negative effects. Our working hypothesis is that sleep 
deprivation-induced inflammatory processes underlie cognitive decline due to sleep deprivation. 
These processes are reflected by biochemical analytes such as cytokines, lipids and cortisol in blood 
and saliva. Skin conductance and heart rate may be of interest as well since they reflect the level of 
arousal which may also have explanatory value. The advantage of the physiological measures is that 
they are non-invasive and continuous. 

In the current study, we compare 1 night sleep deprived and control individuals on a number of 
physiological, biochemical and performance markers. To evaluate the biochemical and physiological 
effect of sleep deprivation, we use machine learning models to select features that best describe the 
difference between sleep deprived and control participants.   

Methods 
This study was approved by the METC Brabant (approval no. NL74961.028.20). In total, 102 
participants were recruited through the institute’s participant pool and through direct recruitment 
advertisements. Ages ranged from 19 to 55 years old (M = 28.5, SD = 10.3). They were randomly 
assigned to spend the night awake at the research institute (n=58) or at home sleeping (n=44). All 
participants underwent the same measurement procedures including cognitive tests (SYNWIN multi-
tasking, Psychomotor Vigilance task, Go-no go inhibition task, Sternberg working memory task, TAP-
M flexibility of task switching), exposure to social stressors (Sing-a-Song Stress Test and Trier Social 
Stress Test) and had standardized breakfasts the morning before and after the night. Heart rate and 
skin conductance were recorded throughout using a Tickr chest-strap (Wahoo Fitness, Atlanta, GA, 
USA) and EdaMove 4 (Movisens GmbH, Karlsruhe, Germany), respectively. Sampling of saliva and 
blood occurred both before and after the social stressors.  
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Heart rate and phasic skin conductance values were determined for several intervals before, during, 
and after the social stressors. The concentration of cortisol and cytokines were determined in saliva 
and blood. Via metabolomics analyses, using the Lipidyzer lipidomics platform, a large panel of lipid 
species were analyzed in blood (only samples before the social stressors).  

For the modelling, we used logistic regression with an elastic net penalty. We trained the model with 
data of 90% of the participants  using 10-fold cross validation and tested the model with the 
remaining participants that were completely kept separately from the training procedure. This 
procedure was followed once with the physiological data and once with the biochemical data from 
blood and saliva. In total, 40 input features were used for the physiological model and 753 input 
features were used for the biochemical model (729 of which concern lipid species from blood, 2 
cortisol metabolites from saliva, and 22 cytokines from blood and saliva). All features concern values 
from the second morning, baselined for each individual participant by the values on the first 
morning.  

Results 
For all cognitive tests, we found (strongly) significant effects of sleep deprivation, showing a decrease 
in performance for the sleep deprived group of participants compared to the controls.  

The biochemical model distinguished sleep deprived versus control participants with an accuracy of 
100% for the training data; for the test data the accuracy was 90%. In total, 114 out of the 753 
features contributed significantly to the model. One of these was a cortisol feature, 7 cytokine 
features and the remainder were lipids from various classes. By contrast, the physiological model 
could not distinguish sleep deprived versus control participants (accuracy of 70% for the training 
data, but for the test data the accuracy was 44%). 

Discussion 
Our study resulted in a rich database that can help elucidate associations between cognitive 
performance, sleep deprivation and a range of biochemical, physiological and psychological factors. 
Our first analyses as described here suggest that sleep deprivation does not so much affect 
physiological parameters (indicative of physiological arousal), but rather biochemical markers, many 
of which are associated to inflammatory processes. In fact, biomarkers from blood and saliva allow 
for a very accurate estimate of whether or not an individual is sleep deprived. Further interpretation 
and analyses linking effects on biochemical markers to decreases in performance are required.  
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Introduction 
The brain-computer interface (BCI) is a next-generation interface that can provide an alternative 
control of external devices to people with movement restrictions, such as quadriplegics [1], [2]. 
Basically, BCIs detects neurophysiological biomarkers associated with specific functions or states in the 
brain and there are various control paradigms that effectively modulate such discriminative conditions. 
Motor imagery (MI) is one of them and has widely used in various BCI studies because of its 
intuitiveness as UI, and relatively high performance among imagery based control paradigms [3]. As 
other BCI paradigm, however, motor imagery BCI also needs long-term recording for system calibration 
and possibly expensive equipment for high-quality brain signals for reliable operation with high 
accuracy. Because of these issues, there is a large demand for public dataset in the field and related 
projects (the, MOABB  [4], Deep BCI  [5] and BCI competition [6]) have been launched and some BCI 
data are available through the repositories of the projects. Expectedly, the volume of open BCI dataset 
will grow and larger data will be usable for various studies in the future. However, there is an important 
issue before using the open datasets. Basically, the experimental and environmental settings must be 
different across datasets although they are all motor imagery data. This mismatch may cause the 
differences of signals between datasets, consequently limiting the use of open datasets. Thus, 
quantitative and qualitative evaluation of open datasets should be made. Nonetheless, none of studies 
have conducted such investigation. In this study, we conducted the thorough investigation of public 
motor imagery datasets to check the data quality and compatibility across datasets.  

Methods 
We collected 8 EEG datasets of healthy subjects related to MI from resources such as journals 
(Gigascience [7] and Scientific data [8]), platforms (IEEE DataPort  [9]  and MOABB), and research 
projects (Deep BCI). The selection criteria are as follows. The dataset should be a cue-based paradigm 
that includes the left hand (LH) and right hand (RH) imagination paradigms. Some data include 
imagined independently or in combination with the left foot (LF), right foot (RF), feet (F), and each 
finger (EF). The EEG electrode should measure the whole head from the frontal to the occipital areas 
regardless of the number of electrodes. For quality measure, we calculated offline classification 
accuracy under the same pipeline of signal processing. In this computing, we only used left and right 
motor imagery data for simplicity. Data were band-pass filtered (8 – 35 Hz) and temporally segmented 
(500 to 3000ms post cue). Common spatial pattern (CSP) [10] and Linear discriminant analysis (LDA) 
that are relatively standard methods in MI based BCIs, were used. Basically, data of each subject were 
divided in to 10 sets and 7 sets were used for training a classifier model and the 3 sets were tested. 
This process was repeated 10 times, and at each repetition sets were shuffled for fair evaluation. 
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Finally, the average accuracy over 10 estimates were assigned as the performance to each subject. 
Next, we compared the feature vector generated by eight CSP filters (first and last four filters 
respectively) for checking the similarity of datasets.  

Results and Discussion  
A specification of the public dataset is provided in Table 1. The datasets were recorded by different 
devices (Neuroscan, BrainProducts, Neurofax, and Biosemi). The number of EEG electrode is 51.25 and 
the number of subjects is 23.12 on average. The number of trials per class is from a minimum of 30 to 
a maximum of 483. The instruction given to subjects varies across data. There were instructions to 
simply vaguely instruct hands to imagine the action (simple motion instruction, SMI), to direct specific 
actions such as imagining open-closed hands (explicit motion instruction, EMI), or to imagine muscle 
movements (kinetic motion instruction, KMI). In addition, the specific class to imagine was indicated 
by different stimulus types such as arrow, letter, and hand symbol. The offline classification accuracy 
was 61.34% on average (44.84% to 74.1%). However, Kim (2018) show the low accuracy for all subjects 
because only BCI illiterate subjects were recruited for the aim of the study. 

Table 1. Data specification of public dataset 
Data Name 

(Release Year) Resource Num. of 
Subject 

Device 
(Num. of Electrode) 

Num. of Trial  Imagery Classes Instruction 
Type 

Cue 
Display 

Accuracy 
(%)  L R 

Xiaoli(2020)[11] IEEE DataPort 6 Neuroscan 
SynAmps2(122) 

40 
~120 40 ~120 LH, RH SMI Arrow 47.84 

Lee(2019)[12] Deep BCI, MOABB, 
Gigascience 54 BrainProduct 

BrainAmp(62) 200 200 LH, RH SMI Arrow 74.10 

Kim(2018)[13] Deep BCI 12 BrainProduct 
BrainAmp(30) 30 30 LH, RH, RF SMI Arrow 43.89 

Murat(2018)[14] Scientific data 13 Neurofax EEG-1200(19) 138 ~ 
477 

144 ~ 
483 

LH, RH, LF, RF, 
EF EMI Object 69.36 

Cho(2017)[15] Deep BCI, MOABB, 
Gigascienece 52 Biosemi(64) 100 ~ 

120 
100 ~ 
120 LH, RH EMI Text 69.03 

Shin(2016)[16] MOABB 29 BrainProduct 
BrainAmp(30) 60 60 LH, RH KMI Arrow 59.92 

Weibo(2014)[17] MOABB 10 Neuroscan 
SynAmps2(64) 70 ~ 80 70 ~ 80 LH, RH, F, LHRF, 

RHLF KMI Text 65.46 

Ahn(2013)[18] Deep BCI 10 Biosemi(19) 60 60 LH, RH SMI Arrow 59.13 
Figure 1a shows t-SNE map of the CSP feature visualization using Mahalanobis distance. Each circle 

represents a single subject, and each color represents each dataset in left figure. Subjects within the same dataset 
form clusters on the t-SNE map. Lee (2019) and Murat (2018) show to form similar clusters, even though they 
are measured on different days, even months apart, by the same subjects. It would be inferred that the diversity 
of the dataset is more affected by the environment than the subject's state.  

Figure 1b is a visualization of eight features for eight datasets. Each subject and the average over 
subjects are marked with gray and black lines. Similar patterns are identified because the first filter maximizes 
the left MI while the last filter maximizes the right MI, but notable difference presents in scale. The Euclidian 
distances for eight-dimensional features between Murat (2018) and Kim (2018) were closest at 3.3841e+06, and 
Cho (2017) were the most distant on average from all data (1.4488e+11). Therefore, it is expected to be less 
compatible with other data. Kim (2018) shows relatively flat pattern of features compared to other datasets. It 
is expected that CSP filters were not well constructed and consequently producing low accuracy. 

 

Figure 1. CSP feature visualization of dataset. A) t-SNE map of 8-dimensional features of each subject 
are compressed into a two-dimensional space. B) 8-dimensional features for datasets.  
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Conclusion 
In conclusion, we collected the open MI BCI datasets, and investigated their quality and compati3bility. 
As results, we observed that recording settings (device, trials, classes, instruction, cue) are different 
and the classification accuracy also varies across datasets. Additionally, we found that feature 
distributions may be distant between datasets although the feature patterns look similar. These 
findings can be used for designing the better approach of using multiple datasets to advance MI BCIs. 
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Introduction 
Eliciting emotions in a laboratory environment is difficult, especially when it concerns strong positive 
emotions. Over the last few decades, affect-eliciting videos to evoke both positive and negative 
emotions have been used in the study of emotions. However, consistently and reliably eliciting 
strong positive emotions through the use of film clips is challenging. A meta-analysis examining the 
effectiveness of films to induce positive and negative emotional states found a larger effect size for 
levels of reported arousal and affective valence in videos designed to evoke negative emotions (such 
as fear and disgust) than videos designed to induce positive emotions (Fernandez-Aguila, 2019).  We 
developed a paradigm to systematically produce video stimuli to participants designed to induce 
strong positive emotion in a controlled manner. 

Previous research has found that presenting faces and names of loved ones not only elicits stronger 
subjective reports of positive feelings when compared to control faces and names, but is also 
associated with stronger physiological responses including the biphasic decelerative-accelerative 
heart rate response, increases in skin conductance and zygomaticus muscle activity, and decreases in 
the corrugator muscle activity (Guerra, 2010; Guerra, 2011; Lucas, 2019). In our paradigm, we exploit 
this personal aspect, and examine physiological and subjective responses to our video stimuli as well 
as towards video stimuli used to elicit emotion before.  

Methods  
Participants 

A total of 23 participants (14 female, age range between 22 and 78 ) took part in the study. The study 
was approved by the TNO Institutional Review Board (IRB) under number 2022-012. 

Creating Loving Videos 

Participants recruited for the study provided us with the name and information of a loved one to 
contact for a Zoom interview. We specifically noted that we were looking to speak with someone with 
whom the participant has a close and loving relationship. An experimental lead contacted the loved 
one, explained the purpose of the experiment (making a video to elicit strong positive emotions), and 
scheduled a time to make the video. The loved one was instructed not to inform the participant about 
the exact purpose of this meeting. 

During the recorded zoom meeting, the participant’s loved one was asked the following questions:  
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• What do you admire most in (participant’s name)?   
• What is your fondest memory with (participant’s name)?  
• If you were to plan the perfect day with (participant’s name) to make (him/her) happy, please 

describe to me would you do together?   
• What is the impact (participant’s name) has had on your life?   
• What is something you want to say to (participant’s name)?   

 

The number of questions asked varied depending on the content and length of the loved one’s 
answers. If needed, the experimental lead edited the video down to four minutes. Loved ones were 
asked for consent to show their video to their loved ones, and for consent to show their video to other 
(unknown) participants. All but one loved one consented to showing their video to an unknown 
participant.   

Design and procedure  

Participants were presented with two four-minute videos developed as described above: one of their 
loved one (strong positive emotion), and another pseudo-randomly chosen video of another 
participant’s loved one (more neutral emotion). Twenty two videos were shown one time to an 
unknown participant, and one video two times. The comparison of responses to these two videos 
control for effects that the personalized video may have that are not related to the emotional content.   

To compare effects of our videos to videos traditionally used in emotion research, we selected two 
two-minute videos that scored highest in rated valence and arousal as reported by Maffie (2019) (Sea’ 
and ‘Waterfalls’) and two two-minute videos that scored the most neutral (Maffei, 2019) (‘Pietraperzia’ 
and ‘Quartesolo’, both showing village scenery). The positive emotion videos were combined in one 
four-minute movie, and the neutral videos were also combined in one four-minute movie. All videos 
contained appropriate background music for their content. 

The four types of movies (own loving video, other’s loving video, traditional positive, and traditional 
neutral) were shown in counterbalanced order across participants. 

Following each video, participants were presented with the Self-Assessment Manikin (SAM) and asked 
to rate their emotion when watching the video using three dimensions of the scale (pleasure, arousal, 
and dominance). Subsequently, they rated on a 9-point Likert scale the degree to which each of the 
following emotions were elicited by the clip: fear, sadness, rage, disgust, joy, surprise, and neutral 
(Maffei, 2019).  Participants’ heart rate (HR), electrodermal activity (EDA), skin temperature of the face 
(infrared camera), and electrical brain activity (EEG) were measured throughout the experiment. 

Results   
First analyses of the HR, EDA and infrared data indicate that differences between responses to the own 
and other’s loving videos are stronger than between the positive and neutral traditional videos. In fact, 
no clear difference was seen between the two types of traditional videos and the other’s loving video, 
while heart rate was around 5bpm higher for the own loving movie compared to all other movies 
during the first 40 seconds, phasic EDA quickly rose and stayed around 3.5 μSiemens higher, and nose 
temperature increased by .7 °C.  

 
Discussion  
Our first results indicate that the videos created through our paradigm elicit strong emotions, much 
more effectively than the standardized video clips. Although through this experiment we demonstrate 
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that controlled positive stimuli in the lab can elicit strong responses, the data discussed here cannot 
be conclusive as to whether the strong effects of the own loved one’s movie are caused by arousal, 
apart from the positive valence. To explore that, we will compare data from the present experiment 
to data of the same participants using the same sensors, but in response to a highly arousing, low 
valence stressor, the sing-a-song stress test (Brouwer & Hogervorst, 2014). These and other additional 
results will be presented at the conference. 
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Abstract 
The recognition of language is a two-step process: speech must be recognized as such (1,2) and then 
the semantics must be understood. For human-robot interaction voice activity detection (VAD) is of 
great importance (3). Once it is known that a human is talking, speech recognition can be triggered 
and additional modules in the robot can produce responses to the human, or other robotic 
behaviors. For online interaction with precise timing especially when using multimodal data (4), it 
might also be necessary to integrate VAD into a microcontroller or similar embedded system in the 
robot. Advanced methods exist to enable online and embedded VAD (3). However, some of these 
methods are trained on biased data, i.e., data in one language, usually English, which can cause 
problems when used in applications where the interacting human speaks a different language. This is 
well investigated for speech recognition 5) but poorly for VAD. Language-related issues need to be 
considered in some applications, such as supporting patients in non-English speaking environments, 
and may be as important as approaches that handle strong background noise (6, 7).  

In this work, we analyze the performance of two different methods to distinguish background noise 
from spoken words running online on a Raspberry Pi comparing the well-known VAD script of the 
webRTC standard (8, 9) for real-time communication with a frequency-based approach developed by 
our group. Both the webRTC and the frequency-based approaches are suitable for online-usage and 
are independent of an internet connection. We compare latency and accuracy in VAD as a function of 
language (English and German) and environmental condition for both methods implemented with 
Python. To import the webRTC VAD-module an open-source python interface (10) was used. The 
VAD-module is based on a machine-learning model. The basic webRTC VAD often detects short 
noises as speech. To increase the accuracy of the method a control for the length of the detected 
signal is added, which greatly decreases the noise identified as speech. As a downside, this may lead 
to the labeling of some words where only one or two syllables are detected as noise. The frequency-
based approach is using signal processing functions of the python library SciPy. Main feature for the 
feature-based approach is an artificial frequency which is digitally layered on top of the audio signal. 
The amplitude of the artificial frequency is higher than the amplitude of the audio signal and chosen 
so that the according peak in the normalized frequency-range only drops if the audio signal has a 
high enough amplitude but also covers a broad enough part of the spectrum. To increase the 
accuracy two additional features, which are both based on presence of signals in certain frequency-
ranges, are added. Both approaches were implemented on a Raspberry Pi 4B. The onset of voice 
activity is indicated by a pulse on a GPIO pin of the Raspberry Pi 4B. In future research, this pulse can 
be sent on a trigger channel, in order to label electroencephalogram data of the interacting human, 
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for example. In this work the pulse is used to evaluate both methods. It is recorded on one audio-
channel while the other channel simultaneously records the speech. The data can then be looked 
through in an audio program, for example Audacity. For every new spoken statement there should 
be an according signal on the onset-channel.  

The approaches (webRTC VAD, short VAD, and the frequency-based) were tested with four subjects, 
two females and two males (from 21 to 28 years old). All participants are native German speakers, 
but also have good English pronunciation. They spoke 24 German and 20 English words each in 3 
different environmental conditions: complete silence, background noise, and with echo. For data 
analysis, we calculated the number of errors (i.e., not recognized, doubly recognized, and recognized 
as noise) and the number of correct recognitions. We calculated the accuracy of word recognition in 
percent, because we have a different number of words depending on the language. We considered 
only two factors for each evaluation, e.g., we compared two methods for each language across three 
environmental conditions (4 subjects x 3 environmental conditions = 12 samples for each method, 
see Fig. 1-A). For statistical analysis, we formed Friedman test and Dunn’s tests as post-hoc analysis. 
Bonferroni correction was performed for multiple comparisons.  

We found no significant differences in word recognition between the two methods for English words 
[p = n.s., Fig. 1-A1]. However, the frequency-based method outperformed the VAD method on 
German words [p < 0.042, Fig. 1-A2]. This indicates that the VAD method is less suitable for the 
recognition of German words. This evidence was supported by further analysis comparing both 
languages for each method (Fig. 1-B2a, B2b). This further analysis showed that English words were 
recognized better than German words when the VAD method was used [p < 0.014, see Fig. 1-B2a]. 
However, such language-specific differences were not observed in the proposed method [p = n.s., 
see Fig. 1-B2b]. These results indicates that the proposed method (Frequency) works very robustly 
for both languages. Further, we found no significant differences among the three environment 
conditions when the frequency-based method was used [p = n.s., see Fig. 1-B1b]. This indicates that 
the proposed method works robustly for all three environmental conditions. However, words in 
silent environments were much more likely to be detected as noise when the VAD method was used 
[no echo-VAD (Fig. 1-B1a) in errors (RN) vs. no echo-Frequency (Fig. 1-B1b) in errors (RN): p < 0.046].  
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Figure 4 Accuracy in word recognition for both methods (NR: not recognized, DR: doubly recognized, RN: 

recognized as noise, no echo: completely silent without echo and background noise, bnoise: with background 
noise, with echo: with echo, but without background noise) 

Main outcome of this study is that not only speech recognition approaches are language-dependent, 
but that VAD can also be so. Further, the environment might have a strong influence on VAD which 
must be considered when transferring approaches from the lab to a real environment. In our current 
work the developed frequency-based approach is applied to label EEG data for further machine 
learning based processing in the context of robot-based stroke rehabilitation.   
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Introduction 
In contrast to Human-Human Interaction, Human-Machine-Interaction (HMI) suffers from a shared 
understanding of the interactive partners and the environment 1. This becomes more challenging if 
physical interaction is added, as in assistive technology, where this communication bottleneck provides 
a coordination mismatch. Specifically, for locomotion assistance, valid biomechanical and 
neurophysiological models of humans and adequate training sessions are required for understanding 
the behaviors. With a “common language,” the assistive system could quickly adapt its behavior to 
better match the user’s intention and action1. However, the bottleneck is the complexity of the human 
musculoskeletal system (body), neural control (brain), and the inconsistency between humans’ and 
robots’ locomotion capabilities. Although machine learning poses an elegant solution by concentrating 
on the action-reaction of the robot-human-system, e.g., Human-in-the-loop-optimization (HILO)2,3; 
collecting extensive data sets for individual subjects makes the black-box learning methods impractical 
for personalized assistance. Another bottleneck is that the human movement cost function is unknown 
and might change in different situations4,5. Thus, learning-based methods lack the adaptability to new 
conditions and the ability to predict human behavior for more compatible reactions (termed cognitive 
mobility).6 In the current exoskeleton technology, the lack of mutual understanding hinders the 
coadaptation of the two systems. This vital issue comprises several challenges: the discrepancy 
between human and exo motor control, the absence of mechanical adaptability, and missing cognitive 
mobility and personalization. This study introduces a framework to address these issues, termed Brain-
in-the-loop-optimization (BILO). The core idea for personalization and cognitive mobility is measuring 
the brain signals to approximate human evaluation of gait assistance using passive BCI and 
neuroadaptive technology, which have significant advantages for the BILO approach.  

Adaptive exo design goals 
Personalization means tailoring service to the user’s need. In assistive technology, personalization 
requires comprehending the human cost function (user need), which is unknown. In most studies, the 
metabolic cost is utilized for personalization3,7,8 in the HILO framework, which needs tedious 
measurement. Further, a slight change in the user-environment conditions or movement goal might 
require revising the controller. Recently, the reinforcement learning approach accelerated the exo 
personalizatoin6,9. Instead of metabolic cost, new metrics like transferred work ratio between the 
exoskeleton and wearer6 or following the leader command (non-impaired limb) are introduced for fast 
learning. These new metrics are not well established and generalizable. Moreover, the human 
locomotion cost function may change in different gaits and conditions5,10,11, which is not considered in 
these methods. Therefore, no universal metric for personalizing assistance is introduced.  

Here cognitive mobility means controlled locomotion, supervised minimally but significantly by human 
cognition. Minimally, because humans do not need full concentration for locomotion. In that sense, 
cognitive control plays the trainer role, giving few but crucial commands at critical moments. 
Involvement of cognition in locomotion control could generate efficient and individualized gait with 
natural gait transition and proper reaction to perturbations. Hypothetically, to predict human cognitive 
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control, we need to know a brain model or have the same brain in the exo. Yet, none of these options 
are available and cognitive control of assistive devices is limited to asking the users to relay their 
intention to change the gait (e.g., initiate walking), e.g., using brain-computer interface (BCI)12–15. The 
state-of-the-art BCI, mainly focusing on motion imagery for control of assistive devices16, needs long 
training and full attention for Exo control, which hinders explosive growth in daily life applications.  

Approach 
Brain-in-the-loop optimization (BILO). Inspired by 
utility theory17, the human utility (or cost) function 
determines preference over a set of physical and 
mental parameters. We aim to identify locomotion 
cost function from brain activities, offering a unifying 
model of perception and action for optimizing gait 
assistance. This way, we will employ human 
brainpower for personalization and cognitive mobility 
with minimum user attention. Instead of using BCI for 
sending control commands, the pBCI18 will predict the 
human locomotion cost function to be later applied 
for exo adaptation. This method passively decodes 
mental states (i.e., cognitive workload, mental fatigue 
and vigilance, attention, error detection, emotions)19.  

With the improved quality of the EEG measurement devices, the applications of pBCI are growing fast 
to be utilized in daily life tasks20 ranging from autonomous driving21 to gaming22 and task load detection 
in robotic surgery23. Further, detecting neurophysiological activity was used to exert real-time 
adaptation in machines. This implicit control is implemented through neuroadaptive technology 
without requiring the user to exert any conscious effort24. Our solution to define a new metric for 
human evaluation of the assistance level is to use pBCI to detect mental status. By conducting targeted 
experiments and presenting a meaningful fusion of different measures (effort, cognitive changes, 
emotional status, fatigue, acceptance, stability) we aim to identify the human locomotion cost 
function. Despite abundant efforts required for developing this metric, after its standardization, we 
only need reliable EEG signals to predict the cost function. In principle, the brain having full-body 
information and enormous computational power, could deliver the best assistance assessment. In this 
framework, we do not need precise control of all actuators of the assistive device, which might need 
high bandwidth and cause sensitivity to brain signal measurement. By including adjustable mechanical 
parameters (e.g., EPA design25,26) and high-level control parameters (e.g., concerted control27 as an 
underlying framework of continuous motor control),  different levels of exo control will be adapted to 
individuals. This high-level feedback will be used to tune general exo properties (e.g., stiffness) for 
different individuals and situations when required. In this respect, the body and brain (B+B) 
methodology (Fig. 1) is a package with components complementing each other.  

Outlook 
Although active exoskeletons with BCI-based gait intention detection opened new possibilities in the 
assistance and rehabilitation fields, their vast potential to deploy these systems in clinical and daily life 
applications is unexploited28. Instead of sending voluntary and directed commands to control, the pBCI 
fuses BCI technology with cognitive monitoring, users’ intention information, emotional states, and 
situational interpretations. The proposed implicit control aims to get assistance from the human 
brain’s reaction to adapt the exo to the users’ desires without requesting them to contribute to control. 

 

Figure 1. B+B concept to create a new language for 
human-exo coadaptation 
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In that sense, the human brain assists the exo in learning how to optimize movement assistance. 
Thanks to machine learning methods, this mutual assistance paradigm within the BILO framework 
could provide a breakthrough in gait assistance and any human-robot interaction application. 
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Abstract 
Stroke is one of the major causes of motor function impairment with a projected increase in 
prevalence attributable to the ageing population. Generally, stroke survivors experience some 
degree of spontaneous motor function recovery during the acute stage, however, with time, they 
reach a plateau in functional improvement after which the recovery is slow or stagnant.  

There is evidence suggesting that the potential of brain-computer interface (BCI) based rehabilitation 
therapies may overcome said functional plateau [1-3]. However, the underlying neural mechanisms 
responsible for the improvement are not yet fully understood. To this end, we have recruited chronic 
stroke patients (preliminary sample: n = 15; 5 females) with moderate to severe hemiparesis, who 
underwent a week-long BCI training, preceded by a baseline and pre-training structural (multi-
parametric maps, DTI) and functional MRI scans (resting state, visual metronome task), and followed 
by a post and follow-up scans. The BCI training consisted of 1.5-hour training session each day for a 
total duration of 6 days. Each session consisted of 5 trials, lasting approximately 10 minutes.  

During a trial, the participants followed audio commands saying “left”, “right”, or “relax” by 
imagining performing dorsiflexion of the indicated wrist or by relaxing. When the system detected 
the motor imagination of the correct side, the feedback was generated in the feedback phase. 

The mean accuracy score of all participants, calculated in percentage by dividing the number of 
correctly classified trials to the total number of trials, was 83.8% (SD: 9.6). When comparing the 
accuracy on day 1 (mean accuracy: 80.99%, SD: 10.71) against the accuracy achieved on day 6, out of 
15 patients, 12 had an improved accuracy score (mean accuracy: 85.53%, SD:9.35). Out of the 
remaining 3 patients, two consistently maintained accuracy higher than 80% throughout the 
sessions, while the remaining 2 were slightly deviating around the chance level (i.e., 61%).  

This is a preliminary analysis of the dataset with the aim to include 24 patients with pre/post-
structural and functional MRI scans. The extensive pre-post multi-modal imaging should help shed 
light into the neural mechanisms of BCI-induced plasticity. 

Additionally, it is worth investigating whether subgrouping patients based on lesion severity and 
location might serve as a selection criterion for benefiting from an MI-based BCI therapy. 
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Abstract 
Research on neurotechnology has been recently expanded to the realm of robotic augmentation. In 
particular, augmentation by wearing supernumerary (i.e. additional to the natural number of) robotic 
limbs has been the focus of neuroscientific research regarding human capability for controlling these 
devices. Specifically, supernumerary robotics fingers working in collaboration with natural fingers are 
a relevant testbed to study neurocognitive phenomena. Within this context, the choice of an interface 
modality to control augmentative devices has effects in their embodiment and in the motor learning 
process behind controlling them successfully [1-3]. 

One of the most common interfacing approaches to control supernumerary robotic limbs is 
substitution control, in which the extra limb is controlled by the kinematic output originally intended 
for other body parts. For instance, in our previous study, participants were trained to use an additional 
robotic finger attached to the side of the right hand and controlled by foot movements [4]. Moreover, 
they learned to use it in a piano playing task in under 30 minutes, which showcases human capability 
to quickly integrate augmentation devices in real-world tasks [4]. Crucially, it was also demonstrated 
that participants with better foot coordination skills also performed better in piano playing with the 
foot-controlled SRF [4]. This supports the idea that motor coordination metrics, in particular the ones 
related to the control interface, are predictive of success in robotic augmentation [4]. This can have 
implications for other types of interfaces with higher cognitive demands such as the ones based on 
neurophysiological signals decoding, in which subjects could benefit from tailored training in the 
modulation of these signals. 

Substitution interfaces are an effective approach for short-latency real-time control. However, 
because essentially the degrees of freedom of one body part are transferred to the SRL, this strategy 
could be deemed as not being “true augmentation”, which instead implies simultaneous volitional 
control of natural and artificial limbs without hindering the control of the formers [5]. However, in 
able-bodied people, neural motor commands on the efferent pathways are already tasked with 
controlling all muscles. Hence, there is a shortage of signals available to voluntarily control 
augmentative devices without compromising the control of the biological body [6].  

There have been some meaningful steps towards understanding the mechanisms for successful 
augmentation beyond natural motor constraints. Recent advances in non-invasive recording of 
individual motoneurons activity have facilitated the study of the human potential for controlling a 
subset of these signals independently from the motor unit pool that determines muscle force [7,8]. If 
attained, flexible control of spinal motor neurons will lead to the increase in the number of 
independently controlled neurophysiological signals available (neural output) required for true human 
augmentation. 
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Introduction 
Workload remains one of the most sought-after EEG-based measures in the context of 
neuroergonomics and neuroadaptive technology, given the high potential utility of its real-time 
detection in productive environments [1]. For real-world applications, a workload classifier that does 
not require (re-)calibration across different contexts, tasks, or users is of particular interest (e.g., [2]). 
In previous work, we have developed a workload calibration paradigm that calibrates in under ten 
minutes, with a corresponding classifier that appears to function well across tasks [3,4], particularly 
when looking at continuous rather than binary classifier output values [5]. Here, we expand on this 
work with a new selection of tasks and additional “scaling tasks” to further improve performance. 

As shown in [5] and [6], a continuous interpretation of classifier output can help when translating 
values between tasks or contexts. For example, imagine a classifier that is calibrated on “high” versus 
“low” workload, where “high” load is induced using a particularly difficult arithmetic task. Because of 
this difficulty, both “high” and “low” conditions in different, subsequent task may both be relatively 
easy in comparison, resulting in a “low” workload detection by the classifier regardless of the actual 
condition. When looking at continuous classifier outputs rather than binary categorizations, 
however, this same classifier may still produce statistically significant differences between the two 
conditions. In other words, when the threshold between “high” and “low” is 0.5, interpreting both .1 
and .4 simply as “low” ignores the meaningful difference that exists between them. 

The effective workload induced by a standard calibration task can differ per participant depending on 
their skill or experience with respect to that task. The range of mental exertion thus captured by a 
classifier will differ, and may not correspond to or even include the range of exertion that that same 
individual would experience during a different task. To account for this, we propose using additional 
tasks to quantify participants’ skills. For this experiment, we hypothesized that different tasks induce 
workload to different extents, that a continuous interpretation of classifier output reflects these 
differences better than a binary interpretation, and that the aforementioned quantifications can 
additionally scale the classifier output to cover a range appropriate for different tasks and skills. 

Participants, Tasks, and Methods 
20 participants aged 20-39 were first given four scaling tasks to measure their general ability in four 
areas: mental arithmetic using a version of the computer-based MATH test [7], spatial cognition 
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using a pen-and-paper mental rotation test [8], linguistic ability using the German, pen-and-paper 
Mehrfachwahl-Wortschatz Test B [9], and short-term memory span using a computer-based version 
of the corresponding part of the Wechsler Adult Intelligence Scale IV [10]. Following this, 64-channel 
EEG (Brain Products actiCHamp) was recorded while participants performed the calibration task 
previously described in [3] and [5]. Then, in random order, they performed five more tasks: 1. An 
addition task (AD) requiring them to add two three-digit numbers in either high or low difficulty 
conditions (Q-values [11] >4 or <2); 2. A word recovery task (WR) where participants were shown 
words with letters in random order and were required to “unscramble” them, these words being 
longer, less common words (high workload) or shorter, more common words (low workload); 3. A 
mental rotation task (MR) using stimuli from [12], with difficulty varied by rotating the stimuli to 
different degrees across two planes (high) or one plane (low); 4. A backward digit span task (BDS) 
where participants were given a sequence of 5 (high) or 3 (low) digits one after the other and asked 
to reproduce it in reverse order; 5. An n-back task (NB) [13] with n=2 (high) and n=1 (low). 

We trained individual classifiers for each participant on the data from the calibration task, and 
applied it to their data from the remaining five tasks. For this, data from each of the variable-length 
trials was segmented into 1-second epochs resulting in at least 150 epochs per class per task. A filter-
bank common spatial patterns (FB-CSP, [14]) approach was used using frequency bands 4-7 and 8-13 
Hz. The top three filter pairs were used to train a classifier using regularized linear discriminant 
analysis (LDA). In a first analysis, the trained classifier was applied in a binary fashion to the data of 
the five tasks. In a second analysis, the raw classifier output was used instead and inserted as 
dependent variable into a 2x5 (condition x task) repeated-measures analysis of variance (rmANOVA) 
across all participants. Bonferroni-adjusted pairwise comparisons were calculated to test for effects. 

Results and Conclusion 
For the first, binary analysis, average accuracies across participants for the five tasks were not 
significant, ranging between 46 and 50%. This was expected, as explained above. The rmANOVA 
results, however, showed a significant main effect of condition (F(1, 19) = 25.59, p < .001, ηp

2 = .57), 
indicating that “high” conditions did result in significantly higher classifier output across all five tasks.  

Fig. 1 illustrates the different values for the 
five tasks separately. Some tasks, e.g. the n-
back, appear to consistently induce a higher 
load than e.g. the mental rotation task, which 
would confound binary classification, but still 
show significant differences between 
conditions. Pairwise comparison tests 
indicated that this effect was significant for 
all tasks but WR. 

At the time of writing, the scaling tasks have 
not yet been included in the analysis, but the 
different levels of overall average workload 
across tasks, as seen in the figure, indicate 
that a scaling is useful. The next step is thus 
to evaluate how the participants’ scores on 
the scaling tasks correlate with their 
workload levels across tasks. 

Fig. 1: Simple effects of factor condition from the rmANOVA. 
Asterisks indicate significance at, at least, α = 0.05. 



114 

All in all, the results provide additional indications that a continuous approach, rather than a binary 
(“low” versus “high”) approach to workload classification is a viable method to obtain meaningful 
workload measures from EEG. 
(This work was supported by the U.S. Air Force, FA8655-20-1-7007.)
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Introduction 
Virtual Reality (VR) applications continue to increase in importance in entertainment and, more 
recently, the working environment. Occupational VR training, for example, is a considerably growing 
field of technological innovation. It has been proven useful in creating immersive and realistic work 
experiences to enhance training effectiveness through improving training attention (Cho et al. 2002), 
participation (Shuang et al. 2015; Chen et al. 2021) and transfer into real-life situations. (Sacks et al. 
2013; Shamsudin et al. 2018; Hwang et al. 2022) However, educational advantages and precise 
neural and social-psychological correlates of immersion and realism of virtual reality environments 
are not fully understood. New mobile, wireless fNIRS/EEG- and Biofeedback devices that can connect 
to and influence virtual environments offer exciting new perspectives to establish and probe 
neuroadaptive VR environments for use in research and occupational training and education (see, for 
example, Causse et al. 2019). 

Methods 
In the first phase of this project, a real-life occupational VR electrical safety training application is 
investigated in the form of a field experiment. VR user expectations, experience, technology affinity, 
workers' safety climate, real-life work incidences, and accidences were recorded. Data were collected 
through structured on-site training observations, pre and post-training questionnaires, and an 
already established, company-wide, app-based self-reporting system for safety-relevant occurrences 
and workplace accidents. A third follow-up questionnaire will be sent to previous participants six 
months after the first VR training to investigate long-term changes in technology affinity, readiness to 
use VR devices and workers' safety climate [as measured by the workers' subscale of the NOSACQ-50 
(Kines et al. 2011)]. Additionally, the number of accidents and safety-relevant incidences of the 
participating companies will be compared between business units of the same company in which 
only the mandatory teacher-centred safety training took place and in which additional voluntary VR 
safety training was implemented. Furthermore, pre and post-implementation years (2021 and 2022) 
will be compared in terms of accidents and incidences.  
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Results 
Sixty-six participants (mean age of 38.58 years, 95.5% male) with a mean professional experience in 
electrical work of 18.17 years (SD = 15.2 years) were observed and questioned during their annual 
electrical safety training. The Germany-based company comprises 607 employees and 15 business 
units, of which nine business units participated in the VR training. The technology affinity of subjects 
was relatively low, as they had an MD = 2.67 points on a 7-point Likert scale where a rating of 1 was a 
strong disagreement, and 7 was a strong agreement to statements associated with technology 
affinity. General physiological and psychological aspects of the VR experience (vision, audio, balance, 
handling, immersion, interaction, realism, comprehension and fun) were rated positively (MD = 5.7 
points on a 7-point scale with higher values indicating a stronger agreement and a greater extent of 
the characteristic, IQR = 1.03). 15.1 % of participants reported feeling slightly dizzy or nauseous 
during or after the VR training, and 10.6% reportedly felt uncomfortable during the VR experience. 
Preliminary results further indicate that the investigated VR environment can significantly improve an 
already existing interest for VR (pre MD =  5, post MD =  6, Wilcoxon: p < .001 ), the readiness to use 
a VR application at work (pre MD =  4.67, post MD =  5.33, Wilcoxon: p < .001) and engagement and 
satisfaction with the occupational training (pre MD =  5.25 to post MD =  6, Wilcoxon: p = .032). The 
reluctance and unease with handling the equipment were significantly decreased after the training 
(pre MD =  3.5, post MD =  2, Wilcoxon: p < .001). The participating company) had a highly 
established workers' safety climate (MD = 5.6, IQR = .63). Nevertheless, there were eight serious 
accidents involving electricity, of which one was deadly, and 478 reports of incidents of near-
accidences in 2021. 

Outlook 
A follow-up project currently in an early planning phase will consist of laboratory experiments 
probing neural, physiological and cognitive VR correlates using an fNIRS/EEG- and biofeedback 
device. Questions concerning the role of immersion in VR experiences and skill transfer are sought to 
be answered. More precisely, we aim to probe different levels of immersion, realism and 
embodiment and their impact on executive functions such as attention, memory and decision-
making. Consequently, the establishment of a neuroadaptive application for use in research and 
possibly occupational training is intended. The integration of spectroscopic and electrophysiological 
signals to aid optimal training effectiveness in terms of attention, participation and skill transfer is 
the eventual goal. 
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Abstract 
Introduction: Here we present a comprehensive study which aims to evaluate the potential for a 
neuroadaptive technology that can provide an advantage to the human user in various situations 
where threat may be present. The aim of the first phase, presented here, was to identify neural 
correlates of threat detection (measured via electroencephalography (EEG)) in a controlled 
experimental paradigm and determine how accurately these could be detected on a single trial basis 
against non-threat and distractor images.  
Methods: Twenty-eight participants completed two EEG sessions (31 channels) – each involving a rapid 
serial visual presentation (RSVP) task (the background was removed from images in session one). A 
session consisted of two sets of three blocks; 3 runs, with 5x100 groups of images per run. One set 
required a button-press response to target stimuli. Both distractor images and threat targets each had 
a 10% prevalence during each run. Statistical analyses involved a 3-way repeated measures (ANOVA), 
for factors; button-press (2; button press and no button press) x category (3; first-person, faces, and 
objects/scenes) x Presentation rate (3; 100-175 ms, 200-275 ms, 300-375 ms) – and pairwise post-hoc 
analyses with paired t-tests, correcting for multiple comparisons using Bonferroni adjustments. The 
EEG data were preprocessed and epoched. Machine learning methods were applied for feature 
extraction, calibration and testing. A different classifier was setup and employed for each category and 
duration. For training and testing the data was split, 50% training and 50% testing, randomly selected 
with one cross validation performed on the training set for hyperparameter optimisation. The 
accuracies, achieved in detecting targets from non-target stimuli (ratio 1:8), were measured via area 
under the receiver operator characteristics curve (AUC) for each of the 28 participants.  
Results and Discussion: Analysis of the first session’s RSVP data (images without a background), found 
a significant main effect for all three factors; button-press due to greater accuracy under the button-
press condition (F(1, 27) = 28.27, p < 0.001 , Ƞp2 = 0.51), category due to greater accuracy for first-person 
threat (F(2,54) = 28.32, p < 0.001 , Ƞp2 = 0.51), and presentation rate (F(1.54,41.58) = 127.72, p < 0.001 , Ƞp2 
= 0.83), due to significant differences in AUC overall across each rate of presentation, with accuracy 
improving as presentation times increased. An interaction effect was found for button-press and 
presentation rate (F(1.64,44.26) = 7.82, p = 0.002 , Ƞp2 = 0.23), as button-press accuracies, compared to 
those for no button-press, increased in significance with longer presentations. Overall, threat target 
classification was enhanced compared to distractor classification accuracies, with the highest 
accuracies occurring for the first-person category (Figure 1 a) – which was also the category that 
demonstrated the clearest ERP separability from ERP’s elicited in response to non-threat images, 
having a grand average negative potential around 400ms (Figure 1 d). The results indicate the 
feasibility of classifying threat images with higher accuracy than distractor images, when classified 
against non-threat images (see Figure 1 b1-2 and c1-2). Topographical analysis showing the most active 
brain regions/electrodes for a response to threat versus non-threat stimuli, presented in Figure 1e, for 
each category and presentation duration indicate differences in the spatial and temporal neural 
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response to each category with first-person threat stimuli showing the earliest maximal response 
across broader occipital areas.    
Conclusion: Threat images produce unique ERPs that contain information that enable detection of 
threats, even in the presence of distractors. The statistical analysis shows that accuracy is improved 
for threat classifications when a button response is made – which is consistent with previous research 
[1], [2]. ERP temporal and spatial patterns are modulated by stimulus, type and duration differently 
for threat, non-threat and distractor stimuli.  

 

Figure 5. Button-press data: (a) Threat versus nonthreat; Boxplots showing the area under the ROC curve (AUC) obtained 
on the testing set for each of the different categories presented across all presentation speeds when classifying threat vs 
nonthreat stimuli. On each box, the central mark is the median, the edges of the box are the 25th and 75th percentiles, the 
whiskers extend to the most extreme datapoints the algorithm considers not to be outliers, and the outliers are plotted 
individually. Threat versus nonthreat (b1 and b2)/ Distractor versus nonthreat (c1 and c2); (b1 and c1) presents the AUC 
grouped per category and (b2 and c2) shows the estimated marginal means of AUC for classification accuracies – category 
had 3 levels; (1) first-person, (2) faces and (3) objects/scenes. Presentation rates were (1) 100-175ms, (2) 200-275ms, and 
(3) 300-375ms. Event-related potential (ERP) (d): plots for the first person threat versus nonthreat ERP grand averages 
(single channel), across each presentation rate. Brain areas/EEG channels (e) where the majority of information occurs to 
enhance separability between threat and non-threat stimuli elicited ERPs, for each category, at each presentation rate. 
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